首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

7.
8.
9.
10.
Analysing the weak lensing distortions of the images of faint background galaxies provides a means to constrain the average mass distribution of cluster galaxies and potentially to test the extent of their dark matter haloes as a function of the density of their environment. The observable image distortions are a consequence of the interplay between the effects of a global cluster mass distribution and the perturbations resulting from individual cluster galaxies. Starting from a reconstruction of the cluster mass distribution with conventional techniques, we apply a maximum likelihood method to infer the average properties of an ensemble of cluster galaxies. From simulations this approach is found to be reliable as long as the galaxies including their dark matter haloes only contribute a small fraction to the total mass of the system. If their haloes are extended, the galaxies contain a substantial mass fraction. In this case our method is still applicable in the outer regions of clusters, where the surface mass density is low, but yields biased estimates of the parameters describing the mass profiles of the cluster galaxies in the central part of the cluster. In that case it will be necessary to resort to more sophisticated strategies by modelling cluster galaxies and an underlying global mass distribution simultaneously. We conclude that galaxy–galaxy lensing in clusters provides a unique means to probe the presence and extent of dark haloes of cluster galaxies.  相似文献   

11.
12.
21-cm emission from neutral hydrogen during and before the epoch of cosmic reionization is gravitationally lensed by material at all lower redshifts. Low-frequency radio observations of this emission can be used to reconstruct the projected mass distribution of foreground material, both light and dark. We compare the potential imaging capabilities of such 21-cm lensing with those of future galaxy lensing surveys. We use the Millennium Simulation to simulate large-area maps of the lensing convergence with the noise, resolution and redshift-weighting achievable with a variety of idealized observation programmes. We find that the signal-to-noise ratio of 21-cm lens maps can far exceed that of any map made using galaxy lensing. If the irreducible noise limit can be reached with a sufficiently large radio telescope, the projected convergence map provides a high-fidelity image of the true matter distribution, allowing the dark matter haloes of individual galaxies to be viewed directly, and giving a wealth of statistical and morphological information about the relative distributions of mass and light. For instrumental designs like that planned for the Square Kilometre Array, high-fidelity mass imaging may be possible near the resolution limit of the core array of the telescope.  相似文献   

13.
14.
We develop a method to measure the probability, P ( N;   M ), of finding N galaxies in a dark matter halo of mass M from the theoretically determined clustering properties of dark matter haloes and the observationally measured clustering properties of galaxies. Knowledge of this function and the distribution of the dark matter completely specifies all clustering properties of galaxies on scales larger than the size of dark matter haloes. Furthermore, P ( N;   M ) provides strong constraints on models of galaxy formation, since it depends upon the merger history of dark matter haloes and the galaxy–galaxy merger rate within haloes. We show that measurements from a combination of the Two Micron All Sky Survey and Sloan Digital Sky Survey or Two-degree Field Galaxy Redshift Survey data sets will allow P ( N;   M ) averaged over haloes occupied by bright galaxies to be accurately measured for N =0–2 .  相似文献   

15.
16.
17.
We present a new method for directly determining accurate, self-consistent cluster lens mass and shear maps in the strong lensing regime from the magnification bias of background galaxies. The method relies upon pixellization of the surface mass density distribution which allows us to write down a simple, solvable set of equations. We also show how pixellization can be applied to methods of mass determination from measurements of shear and present a simplified method of application. The method is demonstrated with cluster models and applied to magnification data from the lensing cluster Abell 1689.  相似文献   

18.
19.
We present the results of weak gravitational lensing statistics in four different cosmological N -body simulations. The data have been generated using an algorithm for the three-dimensional shear, which makes use of a variable softening facility for the N -body particle masses, and enables a physical interpretation for the large-scale structure to be made. Working in three dimensions also allows the correct use of the appropriate angular diameter distances.
Our results are presented on the basis of the filled-beam approximation in view of the variable particle softening scheme in our algorithm. The importance of the smoothness of matter in the Universe for the weak lensing results is discussed in some detail.
The low-density cosmology with a cosmological constant appears to give the broadest distributions for all the statistics computed for sources at high redshifts. In particular, the range in magnification values for this cosmology has implications for the determination of the cosmological parameters from high-redshift type Ia supernovae. The possibility of determining the density parameter from the non-Gaussianity in the probability distribution for the convergence is discussed.  相似文献   

20.
Gravitational flexion has been introduced as a technique by which one can map out and study substructure in clusters of galaxies. Previous analyses involving flexion have measured the individual galaxy–galaxy flexion signal, or used either parametric techniques or a Kaiser, Squires and Broadhurst (KSB)-type inversion to reconstruct the mass distribution in Abell 1689. In this paper, we present an aperture mass statistic for flexion, and apply it to the lensed images of background galaxies obtained by ray-tracing simulations through a simple analytic mass distribution and through a galaxy cluster from the Millennium Simulation. We show that this method is effective at detecting and accurately tracing structure within clusters of galaxies on subarcminute scales with high signal to noise even using a moderate background source number density and image resolution. In addition, the method provides much more information about both the overall shape and the small-scale structure of a cluster of galaxies than can be achieved through a weak lensing mass reconstruction using gravitational shear data. Lastly, we discuss how the zero-points of the aperture mass might be used to infer the masses of structures identified using this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号