首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, the need for safe and economical methods to eliminate heavy metals from contaminated waters has necessitated research on the production of low-cost alternatives to commercially available activated carbon. In the present work, in order to enhance the removal of heavy metals from contaminated water, Zizyphus vulgaris wastes were modified chemically to produce an adsorbent rich in carboxylic groups to enhance the removal of heavy metals from contaminated water. Adsorption of Zn(II) ions on the produced adsorbent was then optimized. The optimal ratio for esterification involved the treatment of Z. vulgaris wastes (1 g) with 0.0037 mmol malic acid in the presence of a very small amount of water for 2 h at 140 °C. The maximum values for adsorption capacity, q max, were 28.7 and 164.6 mg/g on native and modified Z. vulgaris wastes, respectively, at pH 5 and 30 °C with a contact time 2 h and an initial metal ion concentration of 400 mg/L. The equilibrium data were well fitted by the Langmuir and Freundlich adsorption models and demonstrated the significant capacity for Z. vulgaris wastes in the removal of Zn(II) ions from aqueous solutions.  相似文献   

2.
In this work, clinoptilolite was modified with conducting polyaniline polymer and then the nanocomposite was used as an adsorbent for methyl orange (MO) as a model dye. Cations located in clinoptilolite structure like Na+, K+, Mg2+, Ca2+ were exchanged with anilinium cations and then the polymerization of anilinium cations in and outside of the clinoptilolite channels resulted in the formation of polyaniline/clinoptilolite nanocomposite. The resulted nanocomposite was used for the removal of MO from aqueous solution. The effect of various factors like contact time, concentration of dye as well as the amount of adsorbent on the removal efficiency of dye was investigated. The adsorption isotherms were investigated. It was found that the equilibrium adsorption data were well described by the Langmuir isotherm model. The kinetic studies indicated that the adsorption process was controlled by pseudo-second-order equation. High adsorption capacity and low contact time as well as the low cost of modified clinoptilolite proved that it is an efficient adsorbent for the removal of MO from aqueous solutions.  相似文献   

3.
The sorption of cadmium and humic acids from aqueous solutions using surface-modified nanozeolite A has been investigated under various examination conditions. The morphology of untreated and treated nanozeolite was studied under scanning electron microscope and transmission electron microscope. Isotherms of cadmium adsorption onto surface-modified nanozeolite A were studied at different pH, solid to liquid ratio, adsorbate concentration and interaction time. Kinetic and equilibrium studies were conducted and the equilibrium data have been analyzed using Langmuir and Freundlich isotherm models. The study revealed that experimental results were in agreement with the Freundlich model. The Langmuir monolayer adsorption capacity was found to be 1666.67 g cadmium and 6.75 g humic acid per gram of modified nanozeolite A, which is higher than that of reported value for other zeolites. The sorption ability was enhanced by surface modification and reduction in size and enabled the zeolite to adsorb cadmium. The adsorption of cadmium and humic acid on nanozeolite was found to be the highest at pH 6 and 3, respectively. Results showed that solid to liquid ratio and pH are the most important factors for cadmium and humic acid removal, respectively. Effect of competitive ions was studied and results showed that there is no competition between cadmium and humic acid sorption and presence of these ions.  相似文献   

4.
This paper present the possible alternative removal options for the development of safe drinking water supply in the chromium-affected areas. The Cr (VI) state is of particular concern because of its toxicity. The mordenite has suitable mineralogical properties that enable them to be used for ion-exchange processes. This includes total cation exchange capacity. However, in the present work, the modified-natural zeolite was used as an adsorbent for the removal of Cr (VI) from aqueous solution. The ability of modified natural zeolite (mordenite) to remove inorganic anion was investigated. Laboratory experiments were conducted examining the effect of the sorption of cationic surfactants. On the basis of the results of this study, the HDTMA-HSO4 modified zeolite appears suitable as a sorbent for hexavalent chromium whereas EHDDMA-modified zeolite were not removed with the same efficiency. The sorption of chromate on HDTMA-zeolite results from a combination of entropic, coulombic, hydrophobic effects, and HDTMA counterion.  相似文献   

5.
The batch removal of hexavalent chromium from aqueous solutions using almond shell, activated sawdust, and activated carbon, which are low-cost biological wastes under different experimental conditions, was investigated in this study. The influences of initial concentration, adsorbent dose, adsorbent particle size, agitation speed, temperature, contact time, and pH of solution were investigated. The adsorption was solution pH dependent and the maximum adsorption was observed at a solution pH of 2.0. The capacity of chromium adsorption under equilibrium conditions increased with the decrease in particle sizes. The equilibrium was achieved for chromium ion after 30?min. Experimental results showed that low-cost biosorbents are effective for the removal of pollutants from aqueous solution. The pseudo-second-order kinetic model gave a better fit of the experimental data as compared to the pseudo-first-order kinetic model. Experimental data showed a good fit with the Freundlich isotherm model. Changes in the thermodynamic parameters, including Gibbs free energy (??Go), enthalpy (??Ho), and entropy (??So), indicated that the biosorption of hexavalent chromium onto almond shell, activated sawdust, and activated carbon was feasible, spontaneous, and endothermic in the temperature range 28?C50?°C.  相似文献   

6.
Arsenic is a ubiquitous element in the environment and occurs naturally in both organic and inorganic forms. Under aerobic condition, the dominant form of arsenic in waters is arsenate, which is highly mobile and toxic. Arsenic poisoning from drinking water remains a serious world health issue. There are various standard methods for arsenic removal from drinking waters (coagulation, sorption, ion-exchange reactions or methods of reverse osmosis) and alternative methods, such as biosorption. Biosorption of arsenic from natural and model waters by native or chemically modified (with urea or ferric oxyhydroxides) plant biomass prepared from sawdust of Picea abies was studied. The kinetic of the adsorption process fitted well the pseudo second order adsorption model and equilibrium was achieved after 2 h. The results showed that biosorption was well described by both Langmuir and Freundlich isotherms. The maximum biosorption capacity of the sawdust modified with ferric oxyhydroxides, evaluated by Langmuir adsorption model, was 9.259 mg/g, while the biosorption capacity of unmodified biosorbent or biosorbent modified with urea was negligible. The adsorption capacity is comparable to results published by other authors, suggesting that the prepared chemically modified biosorbent has potential in remediation of contaminated waters.  相似文献   

7.
Adsorption and desorption of uranium(VI) from dilute aqueous solutions by Eucalyptus citriodora distillation sludge was studied in a batch mode. The potential of Eucalyptus citriodora distillation sludge to remove uranium(VI) from aqueous solutions has been investigated at different conditions of solution pH, metal ion concentrations, biosorbent dosage, biosorbent particle size, contact time and temperature. The results indicated that biosorption capacity of Eucalyptus citriodora distillation sludge was strongly affected by the medium pH, the biosorbent dose, metal ion concentrations and medium temperature. Reduction in particle size increased the biosorption capacity. Langmuir and Freundlich isotherm models were applied to biosorption data to determine the biosorption characteristics. An optimum biosorption capacity (57.75 mg/g) was achieved with pH 4.0, particle size 0.255 mm, biosorbent dose 0.5 g/100 mL and initial uranium(VI) concentration of 100 mg/L. Uranium(VI) removal by Eucalyptus citriodora distillation sludge was rapid, the equilibrium was established within 60 min and pseudo-second-order model was found to fit with the experimental data. The biosorption process decreased with an increase in the temperature indicating its exothermic nature. Pretreatments of biomass with different reagents affected its biosorption capacity. A significant increase (34 %) in biosorption capacity (83.25 mg/g) was observed with benzene treatment. Fourier-transform infra-red studies showed the involvement of carbonyl, carboxyl and amide groups in the biosorption process. The results indicated that sulfuric acid had the best effects as an eluent showing 93.24 % desorption capacity.  相似文献   

8.
This study presents the results of chromate adsorption upon organically modified clinoptilolite obtained by the treatment of Bigadic clinoptilolite with surfactants in primary amine structure, namely 1-dodecylamine, 1-hexadecylamine and oleylamine. Natural and organo-clinoptilolites were characterized by X-ray diffraction, thermal gravimetry and Fourier transform infrared spectrometry which proved the integration of amine groups followed by the order oleylamine > 1-hexadecylamine > 1-dodecylamine. Organo-clinoptilolites were tested for their efficacy in chromate removal under base case conditions which implied 100 ppm initial concentration, pH 4.0, 10 g l?1 adsorbent dose and at 298 K. Results showed that amine loading induced chromate removal reaching up to 90 % for oleylamine-modified clinoptilolite. Experimentation was continued to determine the effects of pH, adsorbent dosage and initial concentration on chromate adsorption. Accordingly, maximum removal of 94.0 % was attained with 14 g l?1 of oleylamine-modified clinoptilolite, from Cr(VI) solution of 100 ppm initially at pH 3.0. Langmuir isotherm described the adsorption of chromate on oleylamine-modified clinoptilolite with 96.4 % consistency. Maximum theoretical uptake capacity was calculated as 6.72 mg g?1. Kinetic data were consistent with pseudo-second-order model with the controlling steps being film and pore diffusions.  相似文献   

9.
Due to hydrolysis reactions, iron(III) forms oxyhydroxide precipitates in natural waters that minimise its availability to living organisms. Thermodynamic studies have established equilibrium concentrations of dissolved iron at various pH values, however these studies offer no insight into the kinetics of iron(III) polymerisation and subsequent precipitation. In recent work, the kinetics of iron(III) precipitation and dissolution of the precipitate have been investigated, but there are apparent discrepancies between the equilibrium solubility of iron(III) calculated from the kinetic parameters and its solubility measured by separation of the solid and dissolved phases at equilibrium. In this work, we reconcile kinetic and thermodynamic measurements using a polymer-based mechanistic model of the processes responsible for iron(III) precipitation in aqueous solutions based on a variety of previously published experimental data. This model is used to explain the existence of a solubility limit, including the effect of precipitate ageing on its solubility. We suggest that the model provides a unified approach for examining aqueous systems containing dissolved, solid-phase and surface species.  相似文献   

10.
The removal of the chromium (VI) ion from aqueous solutions with the Lewatit FO36 ion-exchange resin is described at different conditions. The effects of adsorbent dose, initial metal concentration, contact time and pH on the removal of chromium (VI) were investigated. The batch ion exchange process was relatively fast and it reached equilibrium after about 90 min of contact. The ion exchange process, which is pH dependent showed maximum removal of chromium (VI) in the pH range 5.0–8.0 for an initial chromium (VI) concentration of 0.5 mg/dm3. The equilibrium related to Lewatit FO36 ion- exchange capacity and the amounts of the ion exchange were obtained using the plots of the Langmuir adsorption isotherm. It was observed that the maximum ion exchange capacity of 0.29 mmol of chromium (VLVg for Lewatit FO36 was achieved at optimum pH value of 6.0. The ion exchange of chromium (VI) on this cation-exchange resin followed first-order reversible kinetics.  相似文献   

11.
Zinc compounds are important group of pollutants which enter water flows from industrial factories sewage. In this research, use of both natural zeolite (clinoptilolite) and its sulfuric acid-modified form as a cheap adsorbent for removing zinc from its solutions has been investigated. The effect of acid concentration, contact duration, pH of solution, initial concentration of zinc, amount of adsorbent and its size was investigated. On average, the maximum adsorption amount is calculated to be 91.1 % with contact duration of 300 min. By increasing contact duration, more adsorption is achieved. Results show that if the more zeolite is used, the more adsorption is achieved. According to results, Langmuir and Freundlich isotherm models were investigated and the adsorption of zinc by modified zeolite was described by both models very well.  相似文献   

12.
Removal of dyes by low-cost adsorbents is an effective method in wastewater treatment. Iranian natural clays were determined to be effective adsorbents for removal of a basic dye (methylene blue) from aqueous solutions in batch processes. Characterizations of the clays were carried out by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis and field-emission scanning electron microscopy. Effects of the operational parameters such as adsorbent dosage, initial dye concentration, solution pH and temperature were investigated on the adsorption performance. Adsorption isotherms like Langmuir, Freundlich and Temkin were used to analyze the adsorption equilibrium data and Langmuir isotherm was the best fit. Adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the adsorption system conforms well to the pseudo-second-order model. The thermodynamic parameters of adsorption (ΔS°, ΔH° and ΔG°) were obtained and showed that the adsorption processes were exothermic.  相似文献   

13.
A hydrophilic kapok fiber was prepared by a chemical process of the Fenton reaction and used as an adsorbent to remove Pb(II) from aqueous solution. The effects of experimental parameters including pH, contact time, Pb(II) concentration, and coexisting heavy metals were estimated as well as evaluated. The optimum concentrations of FeSO4 and H2O2 for the Fenton reaction-modified kapok fiber (FRKF) were 0.5 mol L?1 and 1 mol L?1, respectively. The adsorption kinetic models and isotherm equations of Langmuir and Freundlich were conducted to identify the most optimum adsorption rate and adsorption capacity of Pb(II) on FRKF. The FRKF displayed an excellent adsorption rate for Pb(II) in single metal solution with the maximum adsorption capacity of 94.41?±?7.56 mg g?1 at pH 6.0. Moreover, the FRKE still maintained its adsorption advantage of Pb(II) in the mixed metal solution. The FRKF exhibited a considerable potential in removal of metal content in wastewater streams.  相似文献   

14.
The functionalized nano-clay composite adsorbent was prepared, and its properties were characterized using FT-IR, XRD and SEM techniques. The synthesized nano-clay composite was studied with regard to its capacity to remove ibuprofen under different adsorption conditions such as varying pH levels (5–9), initial ibuprofen concentrations (3, 5 and 10 mg L?1), contact time, and the amount of adsorbent (0.125, 0.25, 0.5 and 1 g). In order to evaluate the nanocomposite adsorption capacity, the adsorption results were assessed using nine isotherm models. The results showed that the optimum adsorption pH was 6 and that an increase or decrease in the pH reduced the adsorption capacity. The adsorption process was fast and reached equilibrium after 120 min. The maximum efficacy of ibuprofen removal was approximately 95.2%, with 1 g of adsorbent, 10 mg L?1 initial concentration of ibuprofen, 120 min contact time and pH = 6. The optimal adsorption isotherm models were the Freundlich, Fritz–Schlunder, Redlich–Peterson, Radke–Prausnitz, Sip, Toth and Khan models. In addition, four adsorption kinetic models were employed for adsorption system evaluation under a variety of experimental conditions. The kinetic data illustrated that the process is very fast, and the reaction followed the Elovich kinetic model. Therefore, this nano-clay composite can be used as an effective adsorbent for the removal of ibuprofen from aqueous solutions, such as water and wastewater.  相似文献   

15.
In this study, the adsorption behavior of Ni(II) in an aqueous solution system using natural adsorbent Peganum harmala-L was measured via batch mode. The prepared sorbent was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption–desorption and pHzpc. Adsorption experiments were carried out by varying several conditions such as contact time, metal ion concentration and pH to assess kinetic and equilibrium parameters. The equilibrium data were analyzed based on the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particular diffusion models. Experimental data showed that at contact time 60 min, metal ion concentration 50 mg/L and pH 6, a maximum amount of Ni(II) ions can be removed. The experimental data were best described by the Langmuir isotherm model as is evident from the high R 2 value of 0.988. The adsorption capacity (q m) obtained was 68.02 mg/g at an initial pH of 6 and a temperature of 25 °C. Kinetic studies of the adsorption showed that equilibrium was reached within 60 min of contact and the adsorption process followed the pseudo-first-order model. The obtained results show that P. harmala-L can be used as an effective and a natural low-cost adsorbent for the removal of Ni(II) from aqueous solutions.  相似文献   

16.
17.
This study reports the potential ability of non-living biomass of Cabomba caroliniana for biosorption of Cr(III) and Cr(VI) from aqueous solutions. Effects of contact time, biosorbent dosage, pH of the medium, initial concentration of metal ion and protonation of the biosorbent on heavy metal–biosorbent interactions were studied through batch sorption experiments. Cr(III) was sorbed more rapidly than Cr(VI) and the pH of the medium significantly affected the extent of biosorption of the two metal species differently. Surface titrations showed that the surface of the biosorbent is positively charged at low pH while it is negatively charged at pH higher than 4.0. Protonation of the biosorbent increased its capacity for removal of Cr(III), while decreasing that of Cr(VI). FT-IR spectra of the biosorbent confirmed the involvement of –OH groups on the biosorbent surface in the chromium removal process. Kinetic and equilibrium data showed that the sorption process of each chromium species followed pseudo second-order kinetic model and both Langmuir and Freundlich isothermal models. A possible mechanism for the biosorption of chromium species by non-living C. caroliniana is suggested.  相似文献   

18.
The experimental conditions for preparation of pomegranate peel carbon and Fe(III) modified pomegranate peel carbon were studied. The effects of main experimental parameters on carbon preparation such as carbonization time, carbonization temperature and Fe(III) impregnation ratio in pomegranate peel were investigated. The prepared carbons in various conditions were characterized by consideration of the production yield, ash content, iodine number, pH of zero point charge and their ability for adsorption of methylene blue. After preparation of carbons, their efficiency for removal of Cd2+ species from aqueous solution was investigated. The effect of experimental parameters such as Cd2+ initial concentration, pH of solution and contact time was studied by batch adsorption experiments. The fitting of experimental data in thermodynamic isotherms matched the linear results with Langmuir and Freundlich isotherms. The adsorption capacity for Cd2+ species on Fe(III) modified pomegranate peel carbon was 22.72 mg/g and the adsorption kinetic presented the pseudo-second-order kinetic model.  相似文献   

19.
In this research, spent coffee grains were modified with citric acid solutions (0.1 and 0.6 M) to increase the quantity of carboxylic groups improving its metal adsorption capacity. Added functional groups on modified and non-modified spent coffee grains were identified and quantified by attenuated total reflection Fourier transform infrared analyses and potentiometric titrations, respectively. These adsorbents were used for the removal of lead (II) and copper (II) from aqueous solutions at 30 °C and different pH in batch systems. In addition, adsorption–desorption experiments were conducted to evaluate the possibility of re-using the modified adsorbent. Potentiometric titrations data reveal that the quantity of carboxylic groups was increased from 0.47 to 2.2 mmol/g when spent coffee grains were modified with 0.1 and 0.6 M citric acid. Spent coffee grains treated with 0.6 M citric acid, achieved a maximum adsorption capacity of 0.77 and 1.53 mmol/g for lead (II) and copper (II), respectively, whereas non-modified spent coffee grains only reached 0.24 and 0.19 mmol/g for lead (II) and copper (II), respectively. Desorption of lead (II) and copper (II) achieved around 70 % using 0.1 N HCl for non-modified and modified spent coffee grains with 0.6 M citric acid. It is suggested that lead (II) and copper (II) species were adsorbed mainly on the carboxylic groups of modified spent coffee grains and these metals may be exchanged for hydrogen and calcium (II) ions during adsorption on non-modified spent coffee grains. Finally, the adsorption equilibrium was reached after 400 min for modified spent coffee grains with 0.6 M citric acid. Modified spent coffee grains are a promising option for removing metal cations from aqueous solutions due to its low cost and high adsorption capacity (about 10 times higher than the activated carbons).  相似文献   

20.
Removal of fluoride from aqueous solution by modified fly ash   总被引:1,自引:0,他引:1  
Removal of fluoride from aqueous solution by modified fly ash was studied in batch model. The influences of the contact time, the initial F^- concentration, the dosage of fly ash, and the temperature on removal of F have been studied, respectively. It was found that fly ash modified with dilute HCl has the maximum adsorption of fluoride from aqueous solutions, and that the retention of fluoride ions by material was 85% or higher with initial 10 mg F^-/L. First-order kinetics was observed for the adsorption process, which follows the Langrnuir and Freundlich isotherms. The thermodynamic parameters such as ΔG0, ΔH0, ΔS0 were calculated from Langmuir constants. The positive value of ΔH0 (1.273 J/mol) confirms the endothermic nature of adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号