首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At present, there is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. The major advantages of adsorption technologies are its effectiveness in reducing the concentration of heavy metal ions to very low levels and the use of inexpensive adsorbent materials. In this review, agricultural and forest waste adsorbents were used to remove Pb2+ ions in wastewater treatment, and their technical feasibilities were reviewed in studies mainly from 2000 to 2010. They all were compared with each other by metal binding capacities, metal removal performances, sorbent dose, optimum pH, temperature, initial concentration and contact time. Although commercial activated carbon is widely used in wastewater treatment applications, it has high costs. The use of agricultural by-products as adsorbent material to purify heavy metal contaminated water has become increasingly popular through the past decade because they are less expensive, biodegradable, abundant and efficient. Instead of activated carbon, this study was focused on the inexpensive materials such as agricultural and forest waste. It was shown that these alternative adsorbents had sufficient binding capacity to remove Pb2+ ions from wastewater.  相似文献   

2.
Arsenic contaminated waters are not uncommon; indeed from naturally occurring contaminated waters through to those that are a direct consequence of human activities such as mining, all are affecting the quality of water resources worldwide. The ever increasing demands on natural water resources mean that the effective control of this toxic contaminant is paramount and this is reflected in the ever increasing global legislation.There are currently three mechanisms by which arsenic is commercially treated in effluents. These are physical separation processes such as reverse osmosis, precipitation/adsorption processes, some of which are bacterially assisted, and a whole variety of ion exchange processes, again with some bacterial enhancement. The choice of treatment is not only driven by cost but by the chemistry of the water and the water quality standard to be met.In this study a very high arsenic enriched groundwater, containing in excess of 25,000 µg/L arsenic, was treated by a typical treatment method through a continuously operated pilot plant. In the treatment, iron III salts were added to the influent in order to form precipitates with the arsenic and to form an adsorptive surface that would assist with treatment of the enriched water. This addition of iron III salts for the removal of arsenic is common practice in the water treatment industry as the resulting iron III arsenates are highly stable.However, results from the pilot plant show that the process was further enhanced by the addition of small amounts of hydrogen peroxide. Hydrogen peroxide is a powerful oxidising reagent and assists in ensuring the complete conversion of any arsenic III to arsenic V that was then effectively removed in the pilot plant. After treatment residual arsenic levels of 10 µg/L were obtained compared to 68 µg/L without oxidation reagent addition.  相似文献   

3.
Arsenic is one of the many naturally occurring contaminants in drinking water. Although various treatment technologies can remove arsenic, most suffer from a common problem of disposal of arsenic-enriched waste after treatment. This project focused on improving a limestone-based disposal technique by encapsulating the arsenic-enriched limestone waste in concrete. The research work determined the compressive strengths of the concrete cubes prepared using treated limestone after arsenic removal and determined the amount of leaching from the arsenic-encapsulated concrete. The removal of arsenic was done with batch experiments using 0.5–1 mm sized Minnekahta Limestone. The efficiency of the limestone in removing arsenic ranged from 85.9 to 95.5%. The amount of arsenic adsorbed onto the surface of each gram of limestone ranged from 0.8 to 3.9 μg. Compressive strength results of concrete cubes prepared by incorporating arsenic-enriched limestone showed typical strength curves at 1, 3, 7 and 28 days. Leaching of arsenic was less than 0.05 mg/L, which is 1/100 of the US Environmental Protection Agency’s standard for disposal of arsenic in a landfill. Hence, encapsulating the arsenic-enriched limestone in concrete has potential for recycling the waste material, thereby reducing disposal costs of the limestone-based removal method.  相似文献   

4.
磷灰石固定水溶性铅离子研究进展   总被引:12,自引:0,他引:12  
羟基磷灰石与天然磷灰石均能有效地固定水溶性铅离子,1g羟基磷灰石或改性活性天然磷灰石除去水溶液中的铅离子量可以高达800mg;其反应机理以磷灰石的溶解与铅的磷酸盐矿物的沉淀为主,伴有表面吸附作用。羟基磷灰石和改性活化天然磷灰石可用于含铅废水的处理,而性能良好的天然磷灰石在对铅污染水体、土壤及废弃物进行原地改良方面具有广阔的前景。  相似文献   

5.
Fe/C-based magnetically activated carbon (MAC) was obtained by carbonizing and activating its precursor, that was prepared by co-precipitation of anthracite coal impregnated in ferric chloride solution. The effect of the concentrations of FeC13 and pH of solution on BET surface area, pore volume and magnetic properties of the MAC was studied by BET N2 adsorption and VSM method. The results indicated that the magnetization of MAC gradually increases with increasing concentration of FeC13 and pH value of solution, and BET surface area was inclined to fluctuation. The largest BET surface area and magnetization of MAC were 1327.5 m2/g and 35.56 emu/g, respec- tively. The form of magnetic matter in the magnetically activated carbon was mainly Fe3C by X-ray powder diffrac- tion (XRD) and magnetic attraction test.  相似文献   

6.
The effectiveness of processed solid residue from olive-mill waste (JEFT) and solid residue of pyrolyzed oil shale in removing methylene blue as a cationic dye and methyl orange as an anionic dye from aqueous solutions has been investigated and compared with that of a commercial activated carbon, namely coconut-shell carbon. All three sorbents showed significant methylene-blue removal, but only the coconut granular-activated carbon showed notable methyl-orange removal. The oil-shale sorbent showed no removal and the olive carbon showed poor removal of methyl orange. The removal of both methylene blue and methyl orange increases with the lapse of time, and attains equilibrium in 100 min. Received: 12 May 1999 · Accepted: 1 November 1999  相似文献   

7.

The study analyzed the food security and dietary diversity of tea workers in Lakkatura Tea Garden and Ootterbhag Tea garden in greater Sylhet district of Bangladesh. A total of 200 respondents (100 from each tea estate) were interviewed to evaluate the food security and dietary diversity. The study found that average daily per capita calorie intake by tea workers was 2095.96 kcal. In addition, around 85.30% of the total calorie intake was received from the rice consumption. Average per capita daily intake of rice was estimated at 538.51 gm which is higher than the national average. It was also observed that 71.7 and 65.0% households were food secure in Lakkatura and Ootterbhag Tea garden, respectively. In Lakkatura Tea Garden, 61.67% tea workers have medium dietary diversity and in Ootterbhag Tea Estate 49.47% tea workers have low dietary diversity. Using the logit model analysis, this study provides food consumption patterns of tea workers and determine the factors responsible for food security. Household size, farm income and daily calorie intake were found having significant influence on households’ food security. For improving socioeconomic conditions of tea workers, educational institution should be set up to improve their educational status and government should give loans for them at a low interest rate and create alternative job opportunity in off season.

  相似文献   

8.
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe3C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.  相似文献   

9.
Iron-hydroxide-rich and plant litter-containing sediments from natural sites contaminated with uranium mine tailing leachates were examined for their ability to adsorb arsenic. The samples with high contents of iron hydroxides (Fetotal concentration, >300 g kg−1) exhibited remarkable fixation of arsenic (up to 40 g As kg−1). This value corresponded approximately to the supersaturation point for natural iron hydroxides under the present conditions, and it was significantly lower than the value found for synthetic iron hydroxides. There was a strong correlation (R=0.8999) between the concentration of iron and that of arsenic at low arsenic contents, indicating adsorption on strong binding sites. Although all the samples had noticeable contents of organic carbon (plant litter), calcium, and manganese, no obvious effect of these elements on arsenic fixation could be detected. The amount of iron hydroxides was found the only fixation-controlling parameter immediately below a leaching water source.  相似文献   

10.
Activated carbons have been proven to be effective adsorbents for the removal of Pb (II) and Zn (II) dissolved in aqueous media. The study of adsorption of Pb (II) and Zn (II) on two different size fractions from a composite coal sample of Maghara coal mine, C63 (63–125 μm) and C250 (125–250 μm) is presented in this paper. C63 and C250 were treated in water solutions of 50 mM lead and zinc acetates. X-ray photoelectron spectroscopy (XPS) was used to characterize the starting and treated coal surfaces. The high surface area and surface functional groups (carboxy and phenolic) enable activated bituminous coal of Maghara to act as efficient adsorbents for removing dissolved Pb (II) and Zn (II) in alkaline medium.  相似文献   

11.
Arsenic in groundwater is a serious environmental problem. The contamination of groundwater with arsenic has been of utmost concern worldwide. Steel slag is a solid waste generated from steel production. Although steel slags have been used for arsenic removal from water, this process has not been systematically or integratively researched. In this study, the arsenic removal capacity and mechanism were investigated for carbon steel slag, stainless steel slag and Fe-modified stainless steel slag based on an in-depth study. The study also evaluated the potential utilization of different steel slag for regeneration. The maximum adsorption of arsenic on carbon steel slag, stainless steel slag and Fe-modified stainless steel slag was 12.20, 3.17 and 12.82 mg g?1 at 25 °C, respectively. The modification of stainless steel slag by FeC13 can generate more pore structures and larger surface areas, and 300 °C treatment produces the best regeneration efficiency. The ΔG values were negative for all of the steel slags, indicating the spontaneous nature of the adsorption process. The solution pH was a critical parameter for the removal of arsenic for steel slags. Under highly alkaline solution conditions, the mechanism of arsenic removal by carbon steel slag and stainless steel slag can be attributed to chemisorption, including chemical precipitation and coordination reactions, and under weakly alkaline solution conditions, electrostatic interaction and specific adsorption are the arsenic removal mechanisms by Fe-modified stainless steel slag. Regeneration of the Fe-modified stainless steel slag was better achieved than that of the other steel slags in the application of high-temperature treatment.  相似文献   

12.
The adsorption of methyl tert-butyl ether by granular activated carbon was investigated. The experimental data were analyzed using the Freundlich isotherm and the Langmuir isotherm. Although equilibrium data were found to follow Freundlich isotherm model, it were fitted better by the Langmuir model with a maximum adsorption capacity of 204.1 mg/g. The kinetic data obtained at different concentrations were analyzed to predict the constant rate of adsorption using three common kinetic models: pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The pseudo-second-order model was suitable for describing the adsorption kinetics for the removal of methyl tert-butyl ether from aqueous solution onto granular activated carbon. Both the Lagergren first-order rate constant k 1 and pseudo-second-order rate constant k 2 decrease with increasing initial concentrations of methyl tert-butyl ether and the intraparticle diffusion rate constant k p shows the reverse characteristic. Analysis of sorption data using a boyd plot confirmed that external mass transfer is the main rate-limiting step at the initial stage of adsorption. Results illustrate that granular activated carbon is an effective adsorbent for methyl tert-butyl ether and also provide specific guidance into adsorption of methyl tert-butyl ether on granular activated carbon in contaminated groundwater.  相似文献   

13.
This work describes a laboratory study concerning the adsorption of isopropylxanthate ions onto modified zeolites particles. The separation of the loaded carrier and their removal, from aqueous solutions, was conducted by flocculation followed by dissolved air flotation, DAF. The zeolite employed was a natural sample (approximately 48% clinoptilolite and 30% mordenite) which was previously treated with sodium ions (activation) and modified with copper ions (Cu–Z) before the xanthate ions uptake. Adsorption capacities (qm) for Cu–Z were 0.34 meq g− 1 for the powdered form, and 1.12 meq g− 1 for the floc form. The adsorption capacity for the floc form appears to involve an enhanced electrostatic adsorption due to the positive sites on the floc surface. In all cases, the isopropylxanthate concentration in the treated water was found to be negligible (< 0.04 mg L− 1). The flotation technique showed to be a fast process, requires a low recycle ratio (20%) in air saturated water, and the treated water ended up with a very low residual turbidity (6.8 NTU). It is believed that this adsorption–flotation technique, here named adsorptive particulate flotation, using activated and modified natural zeolite has a high potential as an alternative for pollutants removal (copper and isopropylxanthate ions) from waste mining effluents.  相似文献   

14.
Due to the severity of arsenic contamination of soil and water resources around the world, finding new adsorbents for arsenic removal from the water is of high importance. The present study investigates the possible use and effectiveness of starch-stabilized Fe/Cu nanoparticles for adsorption of arsenic from aqueous solutions. First, Fe/Cu nanoparticles at various starch concentrations of 0, 0.02, 0.04 and 0.06 wt% were synthesized and characterized by X-ray diffraction, transmission electron microscopy and zeta potential/particle size analyzer. Then 0.04 wt% stabilized Fe/Cu nanoparticles were tested for the sorption of As(III) and As(V) from synthetic arsenic-contaminated water. To have an understanding about the arsenic adsorption mechanism of nanoparticles, X-ray photoelectron spectroscopy (XPS) was performed before and after adsorption. The results showed that starch provides nanoparticles with a neutral surface and stabilization of nanoparticles is possible with 0.04 wt% or higher concentrations of starch. For 0.04 wt% starch-stabilized Fe/Cu nanoparticles, the adsorption isotherms fit well within the Langmuir equation, with maximum sorption capacities of 90.1 mg/g for As(III) and 126.58 mg/g for As(V) at a pH of 7.0 from the aqueous arsenic solutions. Examining the XPS spectra of nanoparticles before and after adsorption showed that arsenic adsorption by this nanoparticle can be due to the formation of inner-sphere arsenic complexes on the particle surface, and the surface oxygen-containing functional groups involved in adsorption. The high sorption capacity suggests the potential for applying starch-stabilized Fe/Cu nanoparticles to the contaminated waters for removal of arsenic.  相似文献   

15.
In the present study, a novel porous carbon obtained by K2CO3 activation of potato peel waste under optimized conditions was applied for the first time as liquid-phase adsorbent of sodium diclofenac in parallel with a commercial activated carbon. The biomass-activated carbon presented an apparent surface area of 866 m2 g?1 and well-developed microporous structure with a large amount of ultramicropores. The obtained carbon presented leaching and ecotoxicological properties compatible with its safe application to aqueous medium. Kinetic data of laboratory-made and commercial sample were best fitted by the pseudo-second-order model. The commercial carbon presented higher uptake of diclofenac, but the biomass carbon presented the higher adsorption rate which was associated with its higher hydrophilic nature which favoured external mass transfer. Both adsorbents presented adsorption isotherms that were best fitted by Langmuir model. The biomass carbon and the commercial carbon presented adsorption monolayer capacities of 69 and 146 mg g?1, and Langmuir constants of 0.38 and 1.02 L mg?1, respectively. The better performance of the commercial sample was related to its slightly higher micropore volume, but the most remarkable effect was the competition of water molecules in the biomass carbon.  相似文献   

16.
砷在自然界中广泛存在,近年来砷污染对人类健康造成的危害越来越引人关注。微生物在自然界中长期与砷共存,进化出不同的生物转化机制,在自然水体中微生物主要参与砷的不同氧化价态之间的转化过程,即As(V)和As(III)之间的氧化还原作用。砷酸盐异化还原菌(Dissimilatory Arsenate Respiring Prokaryote, DARP)可以将As(V)还原为As(III),化能自养亚砷酸盐氧化菌(Chemoautotrophic Arsenite Oxidizer, CAO)和异养亚砷酸盐氧化菌(Heterotrophic Arsenite Oxidizer, HAO)可以将As(III)氧化为As(V)。这些砷代谢微生物在分类和代谢能力上都具有很大的多样性,它们广泛参与了砷的生物地球化学循环的关键步骤,对特定环境条件下砷的地球化学行为产生重要影响,进而参与了砷的全球循环。在盐碱湖莫诺(Mono)湖中砷的不同价态分层存在,CAO与DARP的紧密偶联共同参与了莫诺湖中的砷的地球化学循环。在孟加拉三角洲的地下含水层中,微生物参与了将砷从固相迁移到水相的关键步骤,最终导致了地下水中的砷污染。  相似文献   

17.
. This paper attempts to prove that the removal of arsenic in drinking water is a combination of the granular activated carbon and carbon steel-wool. The steel-wool filter is the most important in residential applications. The single most important consideration is the empty bed contact time. Removal of inorganic arsenic to parts per million (ppm) or parts per billion (ppb) levels within 15 to 30 min is fairly common. Immobilization techniques are likely to continue to gain importance in the world.  相似文献   

18.
In recent years, the need for safe and economical methods to eliminate heavy metals from contaminated waters has necessitated research on the production of low-cost alternatives to commercially available activated carbon. In the present work, in order to enhance the removal of heavy metals from contaminated water, Zizyphus vulgaris wastes were modified chemically to produce an adsorbent rich in carboxylic groups to enhance the removal of heavy metals from contaminated water. Adsorption of Zn(II) ions on the produced adsorbent was then optimized. The optimal ratio for esterification involved the treatment of Z. vulgaris wastes (1 g) with 0.0037 mmol malic acid in the presence of a very small amount of water for 2 h at 140 °C. The maximum values for adsorption capacity, q max, were 28.7 and 164.6 mg/g on native and modified Z. vulgaris wastes, respectively, at pH 5 and 30 °C with a contact time 2 h and an initial metal ion concentration of 400 mg/L. The equilibrium data were well fitted by the Langmuir and Freundlich adsorption models and demonstrated the significant capacity for Z. vulgaris wastes in the removal of Zn(II) ions from aqueous solutions.  相似文献   

19.
砷的水地球化学及其环境效应   总被引:15,自引:1,他引:15  
砷在水环境中的迁移和富集可以产生严重的砷污染,砷在自然水系中主要以无机砷酸盐(AsO4^3-)和亚砷酸盐(AsO3^3-)两种形式存在,而砷的有机化合物的含量一般都很低,砷酸盐在富氧化性的水体中占优势,而亚砷酸盐则富集于还原性水体中,水体中As3 和As5 的相对含量主要受氧化还原条件和一些吸附一解吸平衡过程控制,As3 类比As5 类的毒性强得多,而无机砷化合物比有机砷化合物的毒性大,在pH值为5-6时,As^5 不易被还原成气态AsH3,而s^3 却能定量地被还原出来,根据这一性质,可完成水体中As3 和As5 的测定,砷在饮用水中的安全阀值仅为10ug/L,水体中高砷的危害可以通过水质净化予在消除或降低,铁的化学沉淀和吸附法,石灰软化法,活性氧化铝净化法和逆流渗透法等都可以有效地去除或降低饮用水中砷的含量。  相似文献   

20.
Red mud (RM), the solid waste of alumina industry, is high in silicon, calcium, aluminum and iron oxides. In this study, RM was activated by heat treatment at different temperatures and characterized with BET nitrogen gas sorption, scanning electron microscopy analysis and X-ray diffraction analysis. Immobilization of phosphorus, copper, zinc, and arsenic in swine manure by activated RM was studied as a function of RM dosage, pH and time. The immobilization efficiency of phosphorus, copper, zinc and arsenic increased with the increase in RM dosage, reaching 77, 39, 42, and 78 % when the proportion of RM to swine manure was 20 %. The pH of the solution had a significant impact on the immobilization and it was found that the efficiency increased with the increase in pH. During the 24-h immobilization, the efficiency increased with time and achieved equilibrium after 12 h. Chemical variations of phosphorus, copper, zinc, and arsenic during the immobilization process were investigated with sequential chemical extraction method and the results showed that the contents of non-labile fractions of phosphorus, heavy metals and arsenic increased obviously, whereas the contents of labile fractions decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号