首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-second-order, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes’ surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.  相似文献   

2.
Hexavalent chromium has been proved to be the reason of several health hazards. This study aimed at evaluating the application of pomegranate seeds powder for chromium adsorption (VI) from aqueous solution. Chromium adsorption percentage (VI) increased with increasing the adsorbent dosage. Chromium adsorption capacity (VI), at pH = 2 and 10 mg/L initial metal concentration, decreased from 3.313 to 1.6 mg/g through increasing dosage of adsorbent from 0.2 to 0.6 g/100 ml. The adsorption rate increased through increase in chromium initial concentration (VI). However, there was a removal percentage reduction of chromium (VI). Chromium adsorption kinetics by different models (pseudo-first-order, modified pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, Boyd kinetic) was investigated as well. Studies on adsorption kinetic indicated that the experimental data were matched by pseudo-second-order model (R 2 = 0.999) better. Obtained results demonstrated the pomegranate seeds can be used as an effective biomaterial and biosorbent for hexavalent chromium adsorption from aqueous solutions.  相似文献   

3.
Removal of dyes by low-cost adsorbents is an effective method in wastewater treatment. Iranian natural clays were determined to be effective adsorbents for removal of a basic dye (methylene blue) from aqueous solutions in batch processes. Characterizations of the clays were carried out by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis and field-emission scanning electron microscopy. Effects of the operational parameters such as adsorbent dosage, initial dye concentration, solution pH and temperature were investigated on the adsorption performance. Adsorption isotherms like Langmuir, Freundlich and Temkin were used to analyze the adsorption equilibrium data and Langmuir isotherm was the best fit. Adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the adsorption system conforms well to the pseudo-second-order model. The thermodynamic parameters of adsorption (ΔS°, ΔH° and ΔG°) were obtained and showed that the adsorption processes were exothermic.  相似文献   

4.
The batch removal of hexavalent chromium from aqueous solutions using almond shell, activated sawdust, and activated carbon, which are low-cost biological wastes under different experimental conditions, was investigated in this study. The influences of initial concentration, adsorbent dose, adsorbent particle size, agitation speed, temperature, contact time, and pH of solution were investigated. The adsorption was solution pH dependent and the maximum adsorption was observed at a solution pH of 2.0. The capacity of chromium adsorption under equilibrium conditions increased with the decrease in particle sizes. The equilibrium was achieved for chromium ion after 30?min. Experimental results showed that low-cost biosorbents are effective for the removal of pollutants from aqueous solution. The pseudo-second-order kinetic model gave a better fit of the experimental data as compared to the pseudo-first-order kinetic model. Experimental data showed a good fit with the Freundlich isotherm model. Changes in the thermodynamic parameters, including Gibbs free energy (??Go), enthalpy (??Ho), and entropy (??So), indicated that the biosorption of hexavalent chromium onto almond shell, activated sawdust, and activated carbon was feasible, spontaneous, and endothermic in the temperature range 28?C50?°C.  相似文献   

5.
The kinetics of Co(II) ions adsorption on thermally activated dolomite was studied with respect to the calcination temperature of natural dolomite. The sorption of Co(II) onto all samples is reasonably fast: The first 30–35 min accounts for approximately 70–80 % of Co(II) removal from feed solutions. In order to select the main rate-determining step in the overall uptake mechanism, a series of experiments were performed and data obtained were interpreted in terms of film diffusion control, intraparticle diffusion, pseudo-first-order and pseudo-second-order models. From the modeling of kinetic data, it can be concluded that adsorption of Co(II) ions from aqueous solution by heat-treated dolomite is a complex phenomenon and occurs in a mixed diffusion mode—the kinetic data are well described by the pseudo-second-order equation. The possible multistage sorption mechanism involving film diffusion and intraparticle diffusion control steps as well as chemical interaction between Co(II) ions and calcined dolomite is proposed.  相似文献   

6.
Adsorption kinetic and equilibrium studies of two reactive dyes, namely, Reactive Red 31 and Reactive Red 2 were conducted. The equilibrium studies were conducted for various operational parameters such as initial dye concentration, pH, agitation speed, adsorbent dosage and temperature. The initial dye concentration was varied from 10 - 60 mg/L, pH from 2–11, agitation speed from 100–140 rpm, adsorbent dosage from 0.5 g to 2.5 g and temperature from 30 °C -50 °C respectively. The activated carbon of particle size 600 μm was developed from preliminary tannery sludge. The dye removal capacity of the two reactive red dyes decreased with increasing pH. The zero point charge for the sludge carbon was 9.0 and 7.0 for the two dyes, respectively. Batch kinetic data investigations on the removal of reactive dyes using tannery sludge activated carbon have been well described by the lagergren plots. It was suggested that the Pseudo second order adsorption mechanism was predominant for the sorption of the reactive dyes onto the tannery sludge based carbon. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data fitted well with Langmuir model than the Freundlich model. The maximum adsorption capacity(q0) from Langmuir isotherm were found to have increased in the range of 23.15–39.37 mg/g and 47.62–55.87 mg/g for reactive dyes reactive red 31 and reactive red 2, respectively.  相似文献   

7.
In this study, the removal of free cyanide from aqueous solutions by activated carbon was investigated. Effects of metal impregnation (Cu and Ag), aeration, and concentrations of adsorbent and cyanide on the rate and extent of the removal of cyanide were studied. The results have shown that the capacity of activated carbon for the removal of cyanide can be significantly improved (up to 6.3-fold) via impregnation of activated carbon with metals such as copper and silver. Silver-impregnated activated carbon was found to be the most effective at the reduction of cyanide level in solution. This appeared to be coupled with its comparatively high metal content after impregnation process where silver (5.07%) could be more readily loaded on activated carbon than copper (0.43%). Kinetics and equilibrium data for cyanide removal by plain and metal-impregnated activated carbons were determined to be consistent with the pseudo second-order kinetics and the Langmuir adsorption isotherms, respectively. Aeration (0.27 l/min) was found to exert a profound effect on the process leading to a 5.5–49.1% enhancement in the performances of plain and metal-impregnated activated carbons. This enhancement could be attributed to the increase in the availability of active sites on activated carbon for adsorption and the catalytic oxidising activity of activated carbon in the presence of oxygen. Practical limiting capacity of plain, copper- and silver-impregnated activated carbons for the removal of cyanide were experimentally determined to be 19.7, 22.4 and 29.6 mg/g, respectively.  相似文献   

8.
9.
The aim of this study was to remove a known pharmaceutics, dexamethasone, from an aqueous solution using clinoptilolite zeolite (CP). CP is a natural, versatile and inexpensive mineral, which has been investigated and applied in the last few decades. Herein, the experiments were carried out in the common conditions of a batch system in room temperature, and the effects of some parameters such as pH of the solution, initial concentration of dexamethasone, adsorbent dose and contact time were studied. Kinetic and isotherm of adsorption processes of dexamethasone on CP were surveyed in the current study. Results revealed that the maximum efficiency (78 %) occurred in pH = 4. The adsorption process followed a pseudo-second-order kinetic model as well as Freundlich and Sips isotherm models fitted with the experimental data well.  相似文献   

10.
Adsorption of hexavalent chromium from aqueous solutions by wheat bran   总被引:7,自引:6,他引:1  
In this research, adsorption of chromium (VI) ions on wheat bran has been studied through using batch adsorption techniques. The main objectives of this study are to 1) investigate the chromium adsorption from aqueous solution by wheat bran, 2) study the influence of contact time, pH, adsorbent dose and initial chromium concentration on adsorption process performance and 3) determine appropriate adsorption isotherm and kinetics parameters of chromium (VI) adsorption on wheat bran. The results of this study showed that adsorption of chromium by wheat bran reached to equilibrium after 60 min and after that a little change of chromium removal efficiency was observed. Higher chromium adsorption was observed at lower pHs, and maximum chromium removal (87.8 %) obtained at pH of 2. The adsorption of chromium by wheat bran decreased at the higher initial chromium concentration and lower adsorbent doses. The obtained results showed that the adsorption of chromium (VI) by wheat bran follows Langmuir isotherm equation with a correlation coefficient equal to 0.997. In addition, the kinetics of the adsorption process follows the pseudo second-order kinetics model with a rate constant value of 0.131 g/mg.min The results indicate that wheat bran can be employed as a low cost alternative to commercial adsorbents in the removal of chromium (VI) from water and wastewater.  相似文献   

11.
Analysis was carried out using tangerine peel aiming its use as a potential adsorbent of eight heavy metal ions (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) from aqueous solution. This agricultural waste was tested both in its untreated and also chemically modified form. Based on Fourier transformation infrared spectra, a comparison of biosorbent structure before and after chemical treatment was made. Batch adsorption tests were conducted at different pH and mass of sorbent to examine the influence on the effectiveness of simultaneous removal of tested ions. Kinetic studies were conducted at optimum pH 5.0 and sorbent dosage 300 mg. The pseudo-second-order kinetic model best fit the experimental data with high correlation coefficients (r2 > 0.9997). By optimizing listed parameters, high removal efficiencies (> 89%) were achieved. According to the results obtained in this study, the remediation of water polluted with heavy metals could be done using modified tangerine peel as an agricultural waste material.  相似文献   

12.
In recent years, the need for safe and economical methods to eliminate heavy metals from contaminated waters has necessitated research on the production of low-cost alternatives to commercially available activated carbon. In the present work, in order to enhance the removal of heavy metals from contaminated water, Zizyphus vulgaris wastes were modified chemically to produce an adsorbent rich in carboxylic groups to enhance the removal of heavy metals from contaminated water. Adsorption of Zn(II) ions on the produced adsorbent was then optimized. The optimal ratio for esterification involved the treatment of Z. vulgaris wastes (1 g) with 0.0037 mmol malic acid in the presence of a very small amount of water for 2 h at 140 °C. The maximum values for adsorption capacity, q max, were 28.7 and 164.6 mg/g on native and modified Z. vulgaris wastes, respectively, at pH 5 and 30 °C with a contact time 2 h and an initial metal ion concentration of 400 mg/L. The equilibrium data were well fitted by the Langmuir and Freundlich adsorption models and demonstrated the significant capacity for Z. vulgaris wastes in the removal of Zn(II) ions from aqueous solutions.  相似文献   

13.
14.
In the present experimental study, solid waste was used as an adsorbent and the effectiveness of the adsorbent was increased by novel treatment methods. Red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were used for the removal of lead (II). The structural and functional groups were identified to confirm the removal of lead (II) by powder X-ray diffraction and Fourier transform infrared spectroscopy analyses. The enhancement of surface area was confirmed by Brunauer–Emmett–Teller analysis. Batch adsorption experiment was also conducted, and various parameters such as the effect of adsorbent dosage, pH, contact time and initial ion concentration were analyzed and reported. Adsorption equilibrium data were investigated using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models with three parameters, and the rate of reaction was examined through kinetic models. The results indicate that in particular a novel modified form of red mud, namely iron oxide-coated acid-treated activated red mud was well fitted in lead (II) removal compared with reported adsorbents. The Langmuir isotherm shows that the maximum adsorption of adsorbate per gram was greater than other adsorbents (27.02 mg/g). In Freundlich isotherm, the Freundlich constant n values lie between 1 and 10 indicate the favorable adsorption. The calculated n values for normal red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were found to be 1.9, 2.1 and 2.0 respectively. The correlation coefficient value was higher and the rate of reaction follows the pseudo-second-order kinetic model.  相似文献   

15.
16.
《Applied Geochemistry》2002,17(5):649-656
Adsorption of Mo on to hydrous TiO2 (anatase) particles was investigated. Batch experiments were conducted at 19 and 90 °C over a pH range of 2 to 12 and Mo concentrations ranging from approximately 10−6 to 10−4 M. The extent of sorption was strongly dependent on pH and surface loading. Maximum sorption was observed in the acidic pH range at low surface loading. Adsorption behavior was described using the empirical Langmuir adsorption model. A constant capacitance surface complexation model was also used to fit the adsorption isotherms using a ligand exchange reaction for a hydroxyl surface site on anatase. Comparison of experimental data at two different temperatures (19 and 90 °C) indicates that Mo sorption in the acidic pH range decreases with increasing temperature.  相似文献   

17.
研究了羟基磷灰石(HAP)对水溶液中Fe3+的吸附动力学及热力学。研究表明,HAP对水溶液中Fe3+的吸附符合Langmiur等温吸附,ct/q=0.006 4 ct+0.018 3;该吸附反应符合一级反应动力学方程,ln CR=-0.043 5 t+4.324 4;吸附反应活化能为Ea=36.26 k J/mol;标准摩尔反应焓为正值表明反应过程吸热;当温度大于285.7 K时,吉布斯自由能小于0,反应可自发进行。  相似文献   

18.
黏土质白云岩是新生代形成的弱固结沉积白云岩,具有丰富且开放的孔隙率及高化学反应活性,其作为环境工程材料的应用值得探讨。本文研究了黏土质白云岩去除溶液中铅的效果和作用机理,考察了黏土质白云岩除铅动力学以及初始浓度、固液比对除铅效果的影响。结果表明,黏土质白云岩与不同浓度的铅溶液反应达到平衡所需的时间不同,初始铅浓度越高反应平衡时间越长,与铅浓度100 mg/L溶液反应70 h才基本达到平衡;黏土质白云岩除铅效果主要受反应平衡后溶液的p H值控制,固液比也可影响溶液p H值;固液比越高,平衡p H值越高,铅去除越完全;黏土质白云岩去除溶液中铅离子的作用机制是其中的白云石诱导的铅沉淀,白云石溶解同时形成了碱式碳酸铅。  相似文献   

19.
The functionalized nano-clay composite adsorbent was prepared, and its properties were characterized using FT-IR, XRD and SEM techniques. The synthesized nano-clay composite was studied with regard to its capacity to remove ibuprofen under different adsorption conditions such as varying pH levels (5–9), initial ibuprofen concentrations (3, 5 and 10 mg L?1), contact time, and the amount of adsorbent (0.125, 0.25, 0.5 and 1 g). In order to evaluate the nanocomposite adsorption capacity, the adsorption results were assessed using nine isotherm models. The results showed that the optimum adsorption pH was 6 and that an increase or decrease in the pH reduced the adsorption capacity. The adsorption process was fast and reached equilibrium after 120 min. The maximum efficacy of ibuprofen removal was approximately 95.2%, with 1 g of adsorbent, 10 mg L?1 initial concentration of ibuprofen, 120 min contact time and pH = 6. The optimal adsorption isotherm models were the Freundlich, Fritz–Schlunder, Redlich–Peterson, Radke–Prausnitz, Sip, Toth and Khan models. In addition, four adsorption kinetic models were employed for adsorption system evaluation under a variety of experimental conditions. The kinetic data illustrated that the process is very fast, and the reaction followed the Elovich kinetic model. Therefore, this nano-clay composite can be used as an effective adsorbent for the removal of ibuprofen from aqueous solutions, such as water and wastewater.  相似文献   

20.
Due to hydrolysis reactions, iron(III) forms oxyhydroxide precipitates in natural waters that minimise its availability to living organisms. Thermodynamic studies have established equilibrium concentrations of dissolved iron at various pH values, however these studies offer no insight into the kinetics of iron(III) polymerisation and subsequent precipitation. In recent work, the kinetics of iron(III) precipitation and dissolution of the precipitate have been investigated, but there are apparent discrepancies between the equilibrium solubility of iron(III) calculated from the kinetic parameters and its solubility measured by separation of the solid and dissolved phases at equilibrium. In this work, we reconcile kinetic and thermodynamic measurements using a polymer-based mechanistic model of the processes responsible for iron(III) precipitation in aqueous solutions based on a variety of previously published experimental data. This model is used to explain the existence of a solubility limit, including the effect of precipitate ageing on its solubility. We suggest that the model provides a unified approach for examining aqueous systems containing dissolved, solid-phase and surface species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号