首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical hydrophobic ionic liquids such as 3-butyl-1-methylimidazolium bis(trifluoroethylsulfonyl)imide or 3-butyl-1-methylimidazolium hexafluorophosphate application, as a non-aqueous liquid phase in a two-partitioning bioreactor to biodegrade hydrophobic volatile organic compounds by activated sludge, have been already reported in the literature, especially when the activated sludge was beforehand acclimated to the targeted volatile organic compound. In this study, four hydrophobic ionic liquids were used as non-aqueous liquid phase in a two-phase partitioning bioreactor to biodegrade toluene using non-acclimated activated sludge. The preliminarily results allowed to select two ionic liquids, 1-octylisoquinolinium bis(trifluoromethylsulfonyl)imide and allyl-diethylsulfonium bis(trifluoromethylsulfonyl)imide. The activated sludge was acclimated to both toluene and the considered ionic liquid. The results were compared to those obtained with non-acclimated activated sludge. The use of non-acclimated activated sludge for toluene biodegradation led to long lag times and low biodegradation rates. Thus, the acclimation to toluene improved the biodegradation rates; however, acclimation to both toluene and ionic liquid did not result in a significant improvement in the biodegradation rate compared to an acclimation to toluene alone. The activated sludge acclimation had a positive impact on toluene biodegradation and allowed to totally overcome the inhibitory effect of the presence of ionic liquid. The most relevant acclimation strategy seems to be a prior acclimation to toluene, whereas acclimation to the non-aqueous liquid phase can be achieved during the culture, namely by performing successive batches for instance, or a continuous operation.  相似文献   

2.
Bioregeneration is a process of restoring the adsorptive capacity of the spent adsorbents through microbial action. In this study, the effects of acclimated biomass concentration, biomass acclimation concentration, dosage of granular activated carbon (GAC) and type of GAC on the bioregeneration efficiency (BE) of GAC loaded with phenol and p-nitrophenol (PNP), respectively, were investigated. The quantification was conducted by monitoring the time courses of adsorbed substrate amount during bioregeneration under the sequential adsorption and biodegradation approach. The mean BEs of phenol- and PNP-loaded GAC were found to be 78 ± 2 and 77 ± 1%, respectively. The results revealed that increasing acclimated biomass concentration and adsorbent dosage did not have an observable effect on the BEs of phenol- and PNP-loaded GAC. Additionally, the BEs were found to be almost the same for the bioregeneration of phenol-loaded GAC using biomass acclimated to 350 and 600 mg/L of phenol, respectively. The BEs of phenol-loaded GAC 830 (thermal-activated) and GAC 1240+ (thermal- and acid-activated) did not show any observable difference, but the BE of PNP-loaded GAC 1240+ was found to be greater than that of PNP-loaded GAC 830 indicating that the improvement of BE of spent GAC through further chemical activation was dependent on the type of adsorbate.  相似文献   

3.
Phenol is one of the aromatic hydrocarbons. Phenol and its derivatives are highly toxic. These pollutants can be observed in the effluents of many industries. This research investigates the removal of phenol by the use of activated sludge in a batch system. The effects of influencing factors on biodegradation efficiency have been evaluated. The main factors considered in this study were the volume of acclimatized activated sludge inoculation, pH, temperature, and initial concentration of phenol. The inoculation volumes of 1, 3, and 5 mL of acclimatized activated sludge were taken into account. Different pH values of 3, 5, 7, 9, and 11 were examined. The experiments were conducted for temperatures of 25, 30, 35, and 40 °C and initial phenol concentrations of 400, 800, 1,000, and 1,500 ppm. The results show that the acclimatized activated sludge has a high capacity for the removal of phenol. From a 100-mL aqueous solution was removed 1,500 ppm of phenol after 80 h. Furthermore, maximum phenol removal was observed for an inoculation volume of 5 mL for three different phenol concentrations of 100, 400, and 800 ppm. The best pH was 7 for the biodegradation process, and the optimum temperature was 30 °C. It was further found that an increase in the phenol concentration increased its removal time. Moreover, the activated sludge could effectively remove about 99.9 % of phenol from a synthetic aqueous solution in a batch system.  相似文献   

4.
The disposal of wastewater sludge generated during the treatment of the various municipal and industrial wastewaters is a major environmental problem. In this study the thermophilic bacterium Bacillus licheniformis, which enhances the efficiency of sludge reduction, was isolated from waste activated sludge acclimated to 55 °C. The resulting suspended solids’ degradation was 12 % and chemical oxygen demand solubilization was 18 %. To further enhance the sludge reduction potential, extra polymeric substances, which play a major role in the formation of flocs, were removed. A chemical extractant, ethylenediaminetetraacetate that is also a cation binding agent, was used to remove the extra polymeric substances. After the removal of extra polymeric substances, the suspended solids’ degradation increased from 12 to 23 % and the chemical oxygen demand solubilization increased from 18 to 25 %. These observations confirm that Bacillus licheniformis enhanced sludge reduction in non-flocculated sludge (with the removal of extra polymeric substances) as compared to flocculated sludge (without the removal of extra polymeric substances).  相似文献   

5.
. This paper deals with sorption and anaerobic biodegradation of the soluble aromatic fraction of jet fuel and how it is influenced by pore-water velocity during transport in a groundwater aquifer. The study was carried out as controlled laboratory column experiments. A binary mixture of toluene and 1,2,4-trimethylbenzene with a concentration ratio of 2:1 was used through the entire investigations. The column experiments were conducted with contaminated sediments and groundwater, taken from wells at a field research site. The columns were operated anaerobically under continuous-flow conditions at 10 °C in a temperature-controlled refrigerator. Two percent sodium azide was added to the injection solution of two of the columns to prevent biodegradation of the studied organic mixture. Chloride was used as a conservative tracer to characterize the hydrodynamic parameters such as dispersivity and porosity of the columns. The results showed that both compounds in the mixture were attenuated because of sorption and biodegradation processes in the columns. 1,2,4-trimethylbenzene was attenuated more significantly than toluene. Biodegradation of toluene was coupled mainly with the microbial reduction of ferric iron, whereas 1,2,4-trimethylbenzene, in contrast, was mostly sorbed. Their sorption and biodegradation were studied with different pore-water velocities, and a mass balance approach was applied to calculate biodegradation rates. The biodegradation rates of toluene were –0.16, –0.21, and –0.26 (unit: mM day–1) for pore-water velocities of 96, 82.4, and 54.9 (unit: cm day–1), respectively. This indicates that a decrease in the pore-water velocity significantly enhanced the biodegradation of toluene, consistent with other reports in the literature. For 1,2,4-trimethylbenzene the biodegradation rates were –0.05, –0.13 (unit: mM day–1) for pore-water velocities of 96 and 82.4 (unit: cm day–1), respectively. The biodegradation rate of 1,2,4-trimethylbenzene did not increase at the lowest pore water velocity as expected. This might be a result of substrate competition.  相似文献   

6.
An activated carbon-impregnated cellulose filter was fabricated, and the capacity to remove dust and volatile organic compounds was evaluated in a laboratory. The adsorption capacities for benzene, toluene, ethyl benzene and m-xylene gases were compared by an adsorption isotherm test conducted as a preliminary test, showing that m-xylene and benzene were the most and least favorable for adsorption onto activated carbon, respectively. Cellulose filters were made with four levels of activated carbon contents, and dust removal was performed with all of the filters showing 99 % and higher efficiencies stable with a small variation during the experiment. Activated carbon content of 5 g in the unit filter area (125 g/m2) was found optimum for benzene, toluene, ethylbenzene and m-xylene removal, as it appeared that higher than 5 g activated carbon content was unnecessary for the improvement of its capacity. With increasing benzene, toluene, ethylbenzene and m-xylene loading, the highest removal rates were determined as 0.33–0.37 mg/cm2 s for as short as 0.0046 s of air filter residence time. The rapid removal was possible because of the high surface area of the activated carbon-impregnated cellulose filter provided by powdered activated carbon, which is distinguished from the granular form in conventional activated carbon towers. As fixed within a cellulose scaffolding structure, the powdered activated carbon performed excellent benzene, toluene, ethylbenzene, and m-xylene adsorption (98.9–100 %), and at the same time, particular matters were removed in average 99.7 % efficiency after being filtered through the cellulose filter sheet.  相似文献   

7.
Three microbial consortia were isolated from three polluted soils located at an oil refinery and acclimated to grow on diesel fuel as the sole carbon source. Batch experiments were then conducted with the three consortia to study the kinetics of diesel biodegradation. The effects of temperature (25, 30 and 35?°C) and diesel concentration (0.5, 1 and 3?%) on the biodegradation of diesel were analysed. Several species were identified in the acclimated microbial consortia, and some of them appeared in more than one consortium. Thermal inhibition was observed at 35?°C. In the rest of experiments, over 80?% of the substrate was degraded after 40?h of treatment. These results proved the good feasibility of using the polluted sites as sources of mixed consortia for hydrocarbon degradation. However, diesel degradation efficiencies and rates were very similar, suggesting that the acclimation process produced mixed consortia with very similar characteristics; in this context, origin of the soil sample was not a decisive factor. A simple Monod-type kinetic model was used to simulate the biodegradation process, and accurate results were obtained. The ?? max values were between 0.17 and 0.34?h?1. The results of this study revealed that the consortia can function at high concentrations of hydrocarbons without any sign of growth inhibition, which is important for the design of bioreactors for wastewater treatment with high concentrations of fuel.  相似文献   

8.
This research investigated the potential for industrial-strength 2-methyl-4-chlorophenoxyacetic acid (MCPA) degradation by activated sludge microorganisms in a sequencing batch reactor (SBR) under nitrate-reducing conditions. The research was divided into four phases consisting of Phase I (a “proof-of-concept” phase); Phase II (an initial “tolerance” exploration phase); Phase III (an “effect of hydraulic retention time” phase), and Phase IV (a “limits” phase). The SBR successfully and simultaneously removed the nitrates completely and around 98 % of the MCPA up to an initial concentration of 50 mg/L MCPA in the dimethylamine salt form (DMCPA) (Phases I, II and III); however, it took approximately 28 days to observe a steady, high-level of MCPA removal. When the concentration of DMCPA was increased to 75 mg/L (Phase IV), the MCPA removal efficiency dropped to 85 %, but removal was observed only for a relatively short period of time since the biomass appeared to eventually become saturated with the herbicide, stopping conversion of DMCPA to its acid form and halting biodegradation.  相似文献   

9.
To comparatively study the biodegradation of phthalic acid esters (PAEs) in sewage sludge by composting with pig manure or with rice straw, four composting modes were designed: Mode 1 (sewage sludge + pig manure + intermittent aeration), Mode 2 (sewage sludge + pig manure + continuous aeration), Mode 3 (sewage sludge + rice straw + intermittent aeration) and Mode 4 (sewage sludge + rice straw + continuous aeration). Physicochemical parameters of composts were measured according to standard methods and PAEs were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). The biodegradation of each PAE was also discussed. The results showed that Mode 1 was the best mode to biodegrade PAEs, which might be related to the wide class of indigenous microbial communities in pig manure and high efficiency of intermittent ventilation for providing oxygen. During the biodegradation process, di(2-ethylhexyl) phthalate was the most abundant and decisive for the removal of total PAEs. It showed a first-order kinetic degradation model. In conclusion, composting with pig manure could be suggested as an effective detoxification process for the removal of PAEs from sewage sludge, providing a safe end product.  相似文献   

10.
采集缺氧活性污泥进行室内微生物驯化,培养耐砷反硝化菌。把耐砷反硝化菌、营养液和吸附As(V)的水铁矿在厌氧条件下培养,研究反硝化菌代谢作用下,系统中Fe、Mn、NO3-和As形态的动态变化。结果表明,缺氧活性污泥中的反硝化菌具有一定的耐砷能力。在砷含量500μg/L以内,其反硝化强度基本不受砷的影响。在吸附有砷的水铁矿体系中,反硝化菌所产生的反硝化作用可导致溶液中NO3-含量的降低、Fe含量的升高、As含量降低,且As(III)所占比例增加。这说明,体系中水铁矿的还原性溶解和As(V)的还原性解吸已经发生。As含量降低的原因是,在培养体系中水铁矿的含量高,Fe的释放量只占很小比例,表层水铁矿被还原后,在次表层形成新的水铁矿吸附位,这种新吸附位不仅可以吸附溶液中已经存在的As,而且能够再吸附由于还原性溶解和解吸所释放出的As。  相似文献   

11.
The efficiency of denitrification and enhanced biological phosphorus removal in biological nutrient removal activated sludge systems is strongly dependent on the availability of appropriate carbon sources. Due to high costs of commercial compounds (such as methanol, ethanol, acetic acid, etc.) and acclimation periods (usually) required, the effective use of internal substrates is preferred. The aim of this study was to determine the effects of slowly biodegradable compounds (particulate and colloidal), as internal carbon sources, on denitrification, phosphate release/uptake and oxygen utilization for a full-scale process mixed liquor from two large wastewater treatment plants located in northern Poland. Since it is difficult to distinguish the effect of slowly biodegradable substrate in a direct way, a novel procedure was developed and implemented. Four types of one- and two-phase laboratory batch experiments were carried out in two parallel reactors with the settled wastewater without pre-treatment (reactor 1) and pre-treated with coagulation–flocculation (reactor 2). The removal of colloidal and particulate fractions resulted in the reduced process rates (except for phosphate release). The average reductions ranged from 13 % for the oxygen utilization rate during the second phase of a two-phase experiment (anaerobic/aerobic), up to 35 % for the nitrate utilization rate (NUR) during the second phase of a conventional NUR measurement.  相似文献   

12.
This paper reports the results of the treatment of a yarn dyeing effluent using an integrated biological–chemical oxidation process. In particular, the biological unit was based on a sequencing batch biofilter granular sludge reactor (SBBGR), while the chemical treatment consisted of an ozonation step. Biological treatment alone was first performed as a reference for comparison. While biological treatment did not produce an effluent for direct discharge, the integrated process assured good treatment results, with satisfactory removal of chemical oxygen demand (up to 89.8 %), total nitrogen (up to 88.2 %), surfactants (up to 90.7 %) and colour (up to 99 %), with an ozone dose of 110 mg of ozone per litre of wastewater. Biomass characterization by fluorescence in situ hybridization has revealed that filamentous bacteria represented about 20 % of biomass (coherently with high sludge volume index values); thanks to its special design, SBBGR guaranteed, however, stable treatment performances and low effluent suspended solids concentrations, while conventional activated sludge systems suffer from sludge bulking and even treatment failure in such a condition. Furthermore, biomass characterization has evidenced the presence of a shortcut nitrification–denitrification process.  相似文献   

13.
Oily sludge from gas processing facilities contains components that are major environmental pollutants. Biodegradation is an alternative treatment, but can be affected by other components of the sludge, such as sulphur compounds, so it is important to evaluate the effect of these on oil biodegradation in order to prevent negative impacts. This work studied the transformation of sulphur compounds in oily sludge biodegradation systems at the microcosm level. The predominant sulphur compounds in the original sludge were elemental sulphur and pyrite (9,776 and 28,705.4 mg kg?1, respectively). In the biodegradability assays, hydrocarbon concentrations decreased from 312,705.6 to 186, 760.3 mg kg?1 after 15 days of treatment. After this time, hydrocarbon degrading activity stopped, corresponding with a decrease in hydrocarbon degrading bacteria. These changes were related to a reduction in pH that inhibits biodegradation. During the assay, sulphur compounds were gradually oxidized and transformed. The concentration of sulphate increased from 5,096 to 64,868.3 mg kg?1 after 30 days in the assay, although controls were unchanged. Therefore, it is important to determine changes to the main compounds of the waste in order to assess their impact.  相似文献   

14.
This study evaluated three types of pharmaceuticals and personal care products (methylparaben, ibuprofen and triclosan) at concentration levels of 300, 500, 1000 and 2000 µg/L by implementing batch tests using anaerobic processes and granular biomass. The study aimed to identify the mechanisms of biodegradation and sorption in the degradation of these compounds. The inoculum was granular sludge from a laboratory-scale anaerobic reactor. The characterization results of the inoculum showed an anaerobic biomass with high activity, good sedimentation and a high percentage of organic matter. The results of the removal of the pollutants showed high degradation percentages for methylparaben (close to 99%), with negligible sorption in the sludge. The results also showed insignificant ibuprofen sorption but removal close to 0%. Triclosan showed high biomass sorption and low biodegradation. In addition, at the concentrations tested, none of the compounds had a negative or inhibitory effect on the microbial populations of the system.  相似文献   

15.
Previous studies showed that 85 % of total organic matter (TOM) in digested sewage sludge (biosolids) used as a sealing layer material over sulfide tailings at the Kristineberg Mine, northern Sweden, had been degraded 8 years after application, resulting in a TOM reduction from 78 to 14 %. To achieve a better understanding of the field observations, laboratory studies were performed to evaluate biodegradation rates of the TOM under anaerobic conditions. Results reveal that the original biosolid consisted of ca. 60 % TOM (48.0 % lignin and 11.8 % carbohydrates) that had not been fully degraded. The incubation experiments proved that 27.8 % TOM in the biosolid was further degraded anaerobically at 20–22 °C during the 230 days’ incubation period, and that a plateau to the biodegradation rate was approached. Based on model results, the degradation constant was found to be 0.0125 (day?1). The calculated theoretical gas formation potential was ca. 50 % higher than the modeled results based on the average degradation rate. Cumulated H2S equated to 0.65 μmoL g?1 of biosolid at 230 days. However, the large sulfurous compounds reservoir (1.76 g SO4 2? kg?1 biosolid) together with anaerobic conditions can generate high concentrations of this gas over a long-term perspective. Due to the rate of biodegradability identified via anaerobic processes, the function of the biosolid to serve as an effective barrier to inhibit oxygen migration to underlying tailings, may decrease over time. However, a lack of readily degradable organic fractions in the biosolid and a large fraction of organic matter that was recalcitrant to degradation suggest a longer degradation duration, which would prolong the biosolid material’s function and integrity.  相似文献   

16.
Extensive research and increasing number of potential industrial applications made ionic liquids (ILs) important materials in design of new, cleaner technologies. Together with the technological applicability, the environmental fate of these chemicals is considered and significant efforts are being made in designing strategies to mitigate their potential negative impacts. Many ILs are proven to be poorly biodegradable and relatively toxic. Bioaugmentation is known as one of the ways of enhancing the microbial capacity to degrade xenobiotics by addition of specialized strains. The aim of current work was to select microbial species that could be used for bioaugmentation in order to enhance biodegradation of ILs in the environment. We subjected activated sewage sludge to the selective pressure of 1-methyl-3-octylimidazolium chloride ([OMIM][Cl]) and isolated nine strains of bacteria which were able to prevail in these conditions. Subsequently, we utilized axenic cultures (pure cultures) of these bacteria as well as mixed consortium to degrade this IL. In addition, we performed growth inhibition tests and found that bacteria were able to grow in 2 mM, but not in 20 mM solutions of [OMIM][Cl]. The biodegradation conducted by the isolated consortium was higher than conducted by the activated sewage sludge when normalized by the cell density, which indicates that the isolated strains seem specifically suited to degrade the IL.  相似文献   

17.
Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimise their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contactor were investigated. The overall removal efficiencies of all the compounds ranged from 41 %to 100%. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contactors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10–48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge.  相似文献   

18.
Excess sludge disposal is one of the serious challenges in biological wastewater treatment. Reduction of sludge production would be an ideal way to solve sludge-associated problems rather than the post-treatment of the sludge produced. In this study, a new wastewater treatment process combining anaerobic/anoxic/oxic system with thermochemical sludge pretreatment was tested in a laboratory scale experiment. In this study, the effects of the sludge pretreatment on the excess sludge production in anaerobic/anoxic/oxic were investigated. The system was operated in two Runs (1 and 2). In Run 1, the system was operated as a reference and in Run 2, a part of the mixed liquid was pretreated thermochemically and was returned to the bioreactor. The average solubilization efficiency of pretreated sludge was found to be about 35 % during the study period of 220 days. Sludge production rate in Run 2 was less than that in Run 1 by about 52 %. Total phosphorous was removed by enhanced biological phosphorous removal with the removal efficiency of 83–87 % and 81–83 % for Run 1 and Run 2, respectively. Total nitrogen removal in Run 2 (79–82 %) was slightly higher than that in Run 1 (68–75 %). The mixed liquor suspended solids/mixed liquor volatile suspended solids ratio was identical after both runs in the range 78–83 %. The effluent water qualities were not significantly affected when operated with thermochemical pretreatment at pH 11 and 60 °C for 3 h during 7 months. From the present study it is concluded that thermochemical sludge pretreatment of anaerobic/anoxic/oxic process plays an important role in reduction of sludge production.  相似文献   

19.
Bioremediation is an effective measure in dealing with such contamination, particularly those from petroleum hydrocarbon sources. The effect of soil amendments on diesel fuel degradation in soil was studied. Diesel fuel was introduced into the soil at the concentration of 5 % (w/w) and mixed with three different organic wastes tea leaf, soy cake, and potato skin, for a period of 3 months. Within 84 days, 35 % oil loss was recorded in the unamended polluted soil while 88, 81 and 75 % oil loss were recorded in the soil amended with soy cake, potato skin and tea leaf, respectively. Diesel fuel utilizing bacteria counts were significantly high in all organic wastes amended treatments, ranging from 111 × 106 to 152 × 106 colony forming unit/gram of soil, as compared to the unamended control soil which gave 31 × 106 CFU/g. The diesel fuel utilizing bacteria isolated from the oil-contaminated soil belongs to Bacillus licheniformis, Ochrobactrum tritici and Staphylococcus sp. Oil-polluted soil amended with soy cake recorded the highest oil biodegradation with a net loss of 53 %, as compared to the other treatments. Dehydrogenase enzyme activity, which was assessed by 2,3,5-triphenyltetrazolium chloride technique, correlated significantly with the total petroleum hydrocarbons degradation and accumulation of CO2. First-order kinetic model revealed that soy cake was the best of the three organic wastes used, with biodegradation rate constant of 0.148 day?1 and half life of 4.68 days. The results showed there is potential for soy cake, potato skin and tea leaf to enhance biodegradation of diesel in oil-contaminated soil.  相似文献   

20.
通过对取自MBR膜生物反应器中的活性污泥加入菲进行富集培养、驯化,分离、纯化出一株能以菲为唯一碳源和能源的短杆状革兰氏阴性菌J-1,细菌长2~5μm,宽1~3μm;研究了初始底物浓度、温度、pH对菌株J-1降解菲的影响,探讨了菌株J-1胞内酶对菲降解的底物抑制动力学。试验表明:菌株J-1在48h内能将不同浓度菲的水溶液中的菲完全降解;菲浓度增加,达到完全降解的时间延长。温度对细菌的降解能力影响较大,菌株J-1对菲降解的最佳温度为28℃。1.15mg·L-1的菲,28℃时48h内能完全降解,而相同时间内10℃时的降解率仅为36.65%。菌株J-1对pH的波动具有一定的适应性,pH在一定范围内(6.0~8.4)变化对菲降解的影响不大,降解反应的最佳pH为7.2。菌株J-1对菲的降解符合一级动力学反应方程。较高的底物浓度对酶促降解反应具有抑制作用,酶促反应的最大速率常数vm=1.17mg·L-1·h-1,米氏常数Km=61.70mg·L-1;底物抑制常数kS=49.60mg·L-1;最佳底物浓度[S]opt=55.32mg·L-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号