首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sewage treatment station in oilfield needs a new process to meet the desired requirements. A new process was proposed to meet the discharge standards, which consisted of the following sub-processes: electrochemical treatment → coagulation treatment → integrated biochemical treatment of moving bed biofilm reactor and membrane bio-reactor → combined treatment process of macroporous adsorption resin. Electrochemical treatment included 5 electrolytic cells, total volume of which was 10 L. The PFS was chosen as the coagulants in the coagulation treatment, and the removal rate of COD could reach 66% when the dosage of PFS was 500 mg/L. The biochemical treatment consisted of anoxic tank, aerobic tank and membrane zone, and the removal rate of COD was about 55–70% when HRT was 12 h. SD300 resin was chosen as the best adsorbent in the treatment using macroporous adsorption resin. In addition, the effluent COD after coagulation treatment process becomes about 180 mg/L, the effluent COD after biological treatment becomes about 50 mg/L, and the last effluent COD with the macroporous adsorption resin becomes about 20 mg/L. The three-dimensional fluorescence spectrum was used to analyze the differences in types of organic matters in water samples between the raw water and the treated one. The results demonstrated that the new process meets the needs of wastewater treatment.  相似文献   

2.
The long-term sustainability of an anaerobic ammonium oxidation (anammox) process in a moving bed biofilm reactor (MBBR) treating highly concentrated (mean of 740 mg NH4 +-N L?1) wastewater was demonstrated by 1600 days of efficient operation. A high maximum total nitrogen removal rate (TNRR) of 1.5 g N m?2 d?1 was achieved at the low temperature of 20 °C. For nitrogen removal recovery in cases of nitrite inhibition, anammox intermediate nitric oxide (NO) was tested in batch experiments as an N-removal accelerating agent. The effect of the addition of various NO dosages (8–72 mg NO-N L?1) was studied under inhibitory nitrite concentrations (>100 mg NO2 ?-N L?1) for anammox bacteria. Optimal maintained NO concentration was 58 mg NO-N L?1 and brought about the highest biofilm-specific anammox activity (SAA). Compared to a blank test, the minimum concentration of added NO of 40 mg NO-N L?1 showed a statistically significant (p < 0.05) accelerating effect on SAA. No inhibition of SAA by NO was observed, although at NO concentrations exceeding 72 mg NO-N L?1, the acceleratory effect upon SAA was decreased by 8%. Changes in the bacterial consortia involved in nitrogen conversion were determined concurrently for the different nitrogen removal rates and operational conditions. Quantities of Planctomycetales clone P4 strains, which are the closest (99% similarity) relative to Candidatus Brocadia fulgida, increased from 1 × 103 to 1 × 106 anammox gene copies per g total suspended solids during reactor operation days 568–1600, which was determined by quantitative polymerase chain reaction. During the operation of the MBBR, the abundance of ammonium-oxidizing bacteria (AOB) increased proportionally (up to 30%). The abundance of nitrite-oxidizing bacteria (NOB) did not increase (remaining below 10%) during days 232–860. AOB became predominant over NOBs owing to the inhibition of free ammonia spiking on NOBs.  相似文献   

3.
Denitrification of groundwater was studied using a laboratory-scale reactor packed with biodegradable snack ware served as both carbon source and biofilm support for microorganisms. The complete removal of 50 mg/L of nitrate-nitrogen was achieved in a 23-day-old reactor with 2.1 h of hydraulic retention time without inoculating with any external microorganisms, which indicates that indigenous microorganisms in groundwater proliferate readily and result in stable biofilm formation onto biodegradable snack ware. Accumulation of nitrite and nitrate residue was detected when hydraulic retention time was lower than 2.1 h. The breakthrough of nitrate-nitrogen up to over 10 mg/L in the effluent water was observed with nitrate removal efficiency reducing to about 75 % when hydraulic retention time was lowered to 1.4 h. The highest rate of denitrification was observed with 1.5 h of hydraulic retention time. Dissolved organic carbon concentration in the effluent water ranged between 10 and 20 mg/L during the stable operation of the reactor, and nitrite-nitrogen concentration was never higher than 0.09 mg/L. Considering its relatively low price and high denitrification rate, biodegradable snack ware can become a good alternative for denitrification process.  相似文献   

4.
Undiluted reject water from the dewatering of anaerobic sludge with an average total nitrogen content of 718 ± 117 mg L?1 (n = 63) was used to start-up autotrophic nitrogen removal in three different pilot-scale (3 m3) deammonification configurations: (1) biofilm; (2) activated sludge sequence batch; and (3) two-staged (nitritation–anammox). Time- and concentration-based aeration control with alternating aerobic/anaerobic phases was applied for all reactor configurations. All reactors were initiated without anammox-specific inoculum, and biofilm was grown onto blank carriers. During the initial start-up period, biological nitrogen removal was found to be inhibited by an excessive free ammonia content (>10 mg-N L?1), resulting from the use of high-strength reject water as the process feed. After implementation of free ammonia control by pH adjustment to 6.5–7.5, propagation of the deammonification process was observed with increased nitrogen removal with slight accumulation of NO3 ?–N. The highest total nitrogen removal rates were achieved with the single-reactor biofilm- and sludge-based deammonification processes (1.04 and 0.30 kg-N m?3 day?1, respectively). The critical factors for successful start-up and stable operation of deammonification reactors turned out to be control of pH below 7.5, dissolved oxygen at 0.3–0.8 mg-O2 L?1 and influent solids values below 1000 nephelometric turbidity units. Microbial analysis demonstrated that highest anammox enrichment was achieved in the biofilm reactor (9.40 × 108 copies g?1 total suspended solids). These data demonstrate the potential of an in-situ grown sludge- or biofilm-based concept for the development and propagation of deammonification process.  相似文献   

5.
This review carries out a comparative study of advanced technologies to design, upgrade and rehabilitate wastewater treatment plants. The study analyzed the relevant researches in the last years about the moving bed biofilm reactor process with only attached biomass and with hybrid biomass, which combined attached and suspended growth; both could be coupled with a secondary settling tank or microfiltration/ultrafiltration membrane as a separation system. The physical process of membrane separation improved the organic matter and NH4 +-N removal efficiencies compared with the settling tank. In particular, the pure moving bed biofilm reactor–membrane bioreactor showed average chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen removal efficiencies of 88.32, 90.84 and 60.17%, respectively, and the hybrid moving bed biofilm reactor–membrane bioreactor had mean chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen reduction percentages of 91.18, 97.34 and 68.71%, respectively. Moreover, the hybrid moving bed biofilm reactor–membrane bioreactor showed the best efficiency regarding organic matter removal for low hydraulic retention times, so this system would enable the rehabilitation of activated sludge plants and membrane bioreactors that did not comply with legislation regarding organic matter removal. As the pure moving bed biofilm reactor–membrane bioreactor performed better than the hybrid moving bed biofilm reactor–membrane bioreactor concerning the total nitrogen removal under low hydraulic retention times, this system could be used to adapt wastewater treatment plants whose effluent was flowed into sensitive zones where total nitrogen concentration was restricted. This technology has been reliably used to upgrade overloaded existing conventional activated sludge plants, to treat wastewater coming from textile, petrochemical, pharmaceutical, paper mill or hospital effluents, to treat wastewater containing recalcitrant compounds efficiently, and to treat wastewater with high salinity and/or low and high temperatures.  相似文献   

6.
Nitrate removal from water has been accomplished by heterotrophic biofilms using organic carbon as a source of reducing power. To overcome the natural limitation in organic carbon in water, a poly-ε-caprolactone based biofilm carrier that serves simultaneously as a biofilm carrier and as a source of organic carbon was developed and tested in the present work. The feasibility of the new biofilm carrier for nitrate removal from water was evaluated in a packed bed reactor. The combination of size and structure provided a carrier element having high surface area and void volume, 1,170 m2/m3 and 67 %, respectively. A maximum denitrification rate of 4.4 mg N–NO3 ?/(L.h) (9.2 mg N–NO3 ?/(m2.h)) was achieved in the packed bed reactor at 20 °C and pH 7.0. Main advantages of the biofilm carrier developed in the present work are its mechanical stability in water even after biofilm formation and controlled release of organic carbon by enzymatic reactions. The proposed biotechnology to remove nitrate from groundwater is robust and easy to operate.  相似文献   

7.
A combined ABR–MBR process consisting of an anaerobic baffled reactor (ABR) combined with an aerobic membrane bioreactor (MBR) treating municipal wastewater was investigated at controlled pH range 6.5–8.5 and at constant temperature 25 ± 1 °C. Total nitrogen (TN), ammonia (NH4 +–N), total phosphorus (TP), and chemical oxygen demand (COD) removal performances were evaluated by analyzing the mechanism for efficient nutrient removal. The results showed that the average removal rates of COD, NH4 +–N, TN, and TP reached 93, 99, 79, and 92 %, respectively, corresponding with the COD, NH4 +–N, TN, and TP effluent of 24 (18–31), 0.4 (0–0.8), 10.6 (8.8–12.9), and 0.31 (0.1–0.5) mg/L under the operational condition of hydraulic retention time (HRT) 7.5 h, recycle ratio 200 %, and dissolved oxygen 3 mg/L. The MBR enhanced NH4 +–N, TN, and TP removal rates of 13, 10, and 18 %, respectively, and the membrane retention reduced TP 0.17 mg/L. The process was able to maintain a stable performance with high-quality effluent. Analysis of the results by fluorescence in situ hybridization showed that the abundance of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and phosphorus accumulating organisms as percentages of all bacteria in each compartment was stable. The enriched microorganisms in the system appear to be the main drivers of the process efficient for nutrient removal.  相似文献   

8.
This research evaluates the effect of both organic and ammonia loading rates and the presence of plants on the removal of chemical oxygen demand and ammonia nitrogen in horizontal subsurface flow constructed wetlands, 2 years after the start-up. Two sets of experiments were carried out in two mesocosms at different organic and ammonia loading rates (the loads were doubled); one without plants (control bed), the other colonized with Phragmites australis. Regardless of the organic loading rate, the organic mass removal rate was improved in the presence of plants (93.4 % higher for the lower loading rate, and 56 % higher for the higher loading rate). Similar results were observed for the ammonia mass removal rate (117 % higher for the lower loading rate, and 61.3 % higher for the higher loading rate). A significant linear relationship was observed between the organic loading rate and the respective removal rates in both beds for loads between 10 and 13 g m?2 day?1. The presence of plants markedly increase removal of organic matter and ammonia, as a result of the role of roots and rhizomes in providing oxygen for aerobic removal pathways, a higher surface area for the adhesion and development of biofilm and nitrogen uptake by roots.  相似文献   

9.
A mathematical model was developed to describe the reduction of Cr(VI) by Escherichia coli (E. coli) 33456 in a fixed biofilm reactor. A laboratory-scale column reactor was conducted to verify the model system. The batch kinetic tests were independently conducted to determine the biokinetic parameters used in the model simulation. With the assumed values of initial biofilm thickness (L f0), the mathematical model simulated well the experimental results for Cr(VI) effluent concentration, effluent concentration of suspended E. coli cells, and Cr(III) production. The concentration of suspended E. coli cells reached up to 1.2 mg cell/L while the thickness of attached E. coli cells was estimated to be 32.6 μm at a steady-state condition. At the steady state, the removal efficiency of Cr(VI) was about 92 % and the effluent concentration of Cr(III) was approximately 1.6 mg/L. The approaches presented in this study can be employed for the design of a pilot-scale or full-scale fixed biofilm reactor to treat Cr(VI)-containing wastewater.  相似文献   

10.
In the present study the removal of nitrates from wastewater using Pseudomonas stutzeri microorganism in a Gas–Liquid–Solid bioreactor at the concentration of 200 ppm was studied for a period of 12 h. The response surface methodology with the help of central composite design and genetic algorithm were employed to optimize the process parameters such as airflow rate, biofilm carrier, carbon source, temperature and pH which are responsible for the removal of nitrates. The optimized values of parameters found from RSM are airflow rate 2.41 lpm, biofilm carrier 15.15 g/L, carbon source 85.0 mg/L, temperature 29.74 °C, pH 7.47 and nitrate removal 193.16. The optimized parameters obtained from genetic algorithm are airflow rate 2.42 lpm, biofilm carrier 15.25 g/L, carbon source 84.98 mg/L, temperature 29.61 °C, pH 7.51 and nitrate removal is 194.14. The value of R2 > 0.9831 obtained for the present mathematical model indicates the high correlation between observed and predicted values. The optimal values for nitrate removal at 200 ppm are suggested according to genetic algorithm and at these optimized parameters more than 96 % of nitrate removal was estimated, which meets the standards for drinking water.  相似文献   

11.
This research investigated the potential for industrial-strength 2-methyl-4-chlorophenoxyacetic acid (MCPA) degradation by activated sludge microorganisms in a sequencing batch reactor (SBR) under nitrate-reducing conditions. The research was divided into four phases consisting of Phase I (a “proof-of-concept” phase); Phase II (an initial “tolerance” exploration phase); Phase III (an “effect of hydraulic retention time” phase), and Phase IV (a “limits” phase). The SBR successfully and simultaneously removed the nitrates completely and around 98 % of the MCPA up to an initial concentration of 50 mg/L MCPA in the dimethylamine salt form (DMCPA) (Phases I, II and III); however, it took approximately 28 days to observe a steady, high-level of MCPA removal. When the concentration of DMCPA was increased to 75 mg/L (Phase IV), the MCPA removal efficiency dropped to 85 %, but removal was observed only for a relatively short period of time since the biomass appeared to eventually become saturated with the herbicide, stopping conversion of DMCPA to its acid form and halting biodegradation.  相似文献   

12.
The upflow anaerobic sludge blanket process followed by the biological aerated filter process was employed to improve the removal of color and recalcitrant compounds from real dyeing wastewater. The highest removal efficiency for color was observed in the anaerobic process, at 8-h hydraulic retention time, seeded with the sludge granule. In the subsequent aerobic process packed with the microbe-immobilized polyethylene glycol media, the removal efficiency for chemical oxygen demand increased significantly to 75 %, regardless of the empty bed contact time. The average influent non-biodegradable soluble chemical oxygen demand was 517 mg/L, and the average concentration in effluent from the anaerobic reactor was 363 mg/L, suggesting the removal of some recalcitrant matters together with the degradable ones. The average non-biodegradable soluble chemical oxygen demand in effluent from the aerobic reactor was 87, 93, and 118 mg/L, with the removal efficiency of 76, 74, and 67 %, at 24-, 12-, and 8-h empty bed contact time, respectively. The combined anaerobic sludge blanket and aerobic cell-entrapped process was effective to remove the refractory compounds from real dyeing wastewater as well as in reducing organic loading to meet the effluent discharge limits. This integrated process is considered an effective and economical treatment technology for dyeing wastewater.  相似文献   

13.
The generation of huge amount of liquid waste known as palm oil mill effluent is a major problem in oil palm industry. Meanwhile, anaerobic biodegradation of such organic effluent at thermophilic condition is a promising treatment technology due to its high efficiency. However, storage and transportation of thermophilic mixed culture sludge are challenging due to constant biogas generation and heating requirement. Hence, drying of thermophilic sludge was conducted to obtain dormant thermophiles and thus enables easier handling. In this study, thermophilic sludge was dried using heat pump at 22 and 32 °C as well as hot air oven at 40, 50, 60, and 70 °C. Subsequently, quality of dried sludge was examined based on most probable number enumeration, chemical oxygen demand, and methane yield. Average drying rate was found to increase from 3.21 to 17.84 g H2O/m2 min as drying temperatures increases while average moisture diffusivity values ranges from 5.07 × 10?9 to 4.34 × 10?8 m2/s. Oven drying of thermophilic mixed culture resulted in highest chemical oxygen demand removal and lowest log reduction of anaerobes at 53.41% and 2.16, respectively, while heat pump drying resulted in the highest methane yield and lowest log reduction of methanogens at 53.4 ml CH4/g COD and 2.09, respectively. To conclude, heat pump at 22 °C was most suitable drying technique for thermophilic mixed culture as the original methane-producing capability was largely retained after drying, at a slightly lower yet still comparable chemical oxygen demand removal when palm oil mill effluent was treated with the rehydrated culture.  相似文献   

14.
A considerable increase in nitrate concentration in groundwater has been observed in many countries. This research focuses on nitrate removal using biodegradable snack ware (BSW) as both carbon source and biofilm support for denitrifiers. The denitrification efficiency of a laboratory-scale denitrification reactor packed with BSW was examined in a low-temperature condition. The nitrate removal efficiency supported by BSW decreased to approximately 40% at 12°C from nearly 100% at 25°C with 50?mg/L of nitrate-nitrogen in the influent and 2?h of hydraulic retention time (HRT). The complete nitrate removal was obtained when nitrate-nitrogen concentration was no more than 15?mg/L at 2?h of HRT and at 12°C. If the initial concentration of nitrate-nitrogen was 50?mg/L, 5?h of HRT was needed for the complete nitrate removal. Nitrite concentration in the treated water decreased evidently as HRT was increased from 2 to 5?h, or as nitrate-nitrogen concentration in the influent decreased to 15?mg/L from 50?mg/L. It was observed that varying HRT and nitrate concentration in the influent had no noticeable effect on dissolved organic carbon content in the effluent under the experimental conditions. This study indicated that the complete nitrate removal could be achieved readily even at 12°C using BSW as carbon source by changing HRT or the initial concentration of nitrate in the influent, which has some useful implications in environmental engineering practice.  相似文献   

15.
In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.  相似文献   

16.
In this research, physical, chemical and biological treatability of Tehran solid waste leachate was studied. Results indicate that the amount of COD for the fresh raw leachate of Tehran is equal to 66,608 mg/l. The leachate is transferred to an equalization tank for storage and pH control process. After neutralization, leachate is introduced to an up flow and down flow anaerobic reactor. The effluent of anaerobic reactor is conducted to a sequencing batch reactor. Sequence batch reactor (SBR) effluent was pumped in to sand and activated carbon filters, after chemical coagulation and clarification. Results showed that anaerobic reactor with detention time of 3 days had a 35% COD removal and increasing the detention time to 4.5 days would improve the COD removal to 45%. Nutrient adjustment with phosphorus and nitrogen increased the initial 23% efficiency of sequence batch reactor to 44%. The effluent COD of SBR reactor was 21,309 mg/l. Recycling of aerobic reactor effluent with incoming feed to anaerobic reactor reduced the anaerobic reactor influent COD to 20,000 mg/l and this caused 53% and 57% COD removal in the anaerobic and aerobic effluent, respectively. The total systems COD performance increased to 80% and SBR effluent COD eventually reduced to 4,000 mg/l. Coagulation, flocculation and sedimentation processes were practiced to make the 4,000 mg/l effluent COD comply with environmental standards of Iran. The optimum coagulant found to be ferric chloride with the dosage of 50 mg/l at pH of 12, which reduced 10% of COD to an amount of 3,676 mg/l. The effluent was stored in a tank and then pumped in to pressure sand filter and afterwards to activated carbon filter. The COD removal was three and 90% for sand and activated carbon filters, respectively. The total process reduced the remaining COD to 36 mg/l, which is in compliance with environmental standards of Iran.  相似文献   

17.
The optimization for poly-β-hydroxyalkanoate production was carried out with nutrient removal efficiency for total organic carbon (TOC), phosphate, and nitrate from palm oil mill effluent waste. The experiment was conducted in a fabricated fed-batch reactor and the data obtained was analyzed using central composite rotatable design and factorial design for response surface methodology as a systematic approach for designing the experiment statistically to obtain valid results with minimum effort, time, and resources. The analysis of numerical optimization with propagation of error showed that 66 % of poly-β-hydroxyalkanoate production can be obtained with nutrient removal of TOC and nitrate by 19 and 3 %, respectively. However, phosphate removal efficiency was not found to be much effective. More over, the chemical oxygen demand: nitrogen phosphate (509 g/g N), chemical oxygen demand: phosphate (200 g/g P), air flow rate (0.59 L/min), substrate feeding rate (20 mL/min), and cycle length (20 h) were the optimized variables for maximum poly-β-hydroxyalkanoate production and nutrient removal.  相似文献   

18.
Axenic culture of microalgae Chlorella vulgaris ATCC® 13482 and Scenedesmus obliquus FACHB 417 was used for phycoremediation of primary municipal wastewater. The main aim of this study was to measure the effects of normal air and CO2-augmented air on the removal efficacy of nutrients (ammonia N and phosphate P) from municipal wastewater by the two microalgae. Batch experiments were carried out in cylindrical glass bottles of 1 L working volume at 25 °C and cool fluorescent light of 6500 lux maintaining 14/10 h of light/dark cycle with normal air supplied at 0.2 L min?1 per liter of the liquid for both algal strains for the experimental period. In the next set of experiments, the treatment process was enhanced by using 1, 2 and 5% CO2/air (vol./vol.) supply into microalgal cultures. The enrichment of inlet air with CO2 was found to be beneficial. The maximum removal of 76.3 and 76% COD, 94.2 and 92.6% ammonia, and 94.8 and 93.1% phosphate after a period of 10 days was reported for C. vulgaris and S. obliquus, respectively, with 5% CO2/air supply. Comparing the two microalgae, maximum removal rates of ammonia and phosphate by C. vulgaris were 4.12 and 1.75 mg L?1 day?1, respectively, at 5% CO2/air supply. From kinetic study data, it was found that the specific rates of phosphate utilization (q phsophate) by C. vulgaris and S. obliquus at 5% CO2/air supply were 1.98 and 2.11 day?1, respectively. Scale-up estimation of a reactor removing phosphate (the criteria pollutant) from 50 MLD wastewater influent was also done.  相似文献   

19.
Nitrogen removal from hypersaline wastewater was successfully started up by inoculating estuarine sediments for 140 days. Efficient ammonia and total nitrogen removal was sustained under specific ammonia loading of 0.016–0.139 kg N/[kg VSS day] in a sequencing batch reactor. Stable nitrite accumulation was observed during nitrification. The specific ammonia consumption rate was higher than the value of freshwater activated sludge and salt-acclimated freshwater activated sludge. With methanol as carbon source, specific nitrite reduction rate of halophilic denitrifiers was much less than the freshwater counterpart. Halophilic activated sludge was characterized as good settling and flocculation prosperity with small floc size and net-like sludge structure. The abundance of ammonia-oxidizing bacteria outnumbered ammonia-oxidizing archaeas in both estuarine sediments and the activated sludge. Nitrifier population was dominated by the halophilic members of genus Nitrosomonas. This study demonstrated the application of mixed halophilic consortia for efficient nitrogen removal, overcoming the limits and difficulties of applying freshwater bacteria for saline wastewater treatment.  相似文献   

20.
Phenol is one of the aromatic hydrocarbons. Phenol and its derivatives are highly toxic. These pollutants can be observed in the effluents of many industries. This research investigates the removal of phenol by the use of activated sludge in a batch system. The effects of influencing factors on biodegradation efficiency have been evaluated. The main factors considered in this study were the volume of acclimatized activated sludge inoculation, pH, temperature, and initial concentration of phenol. The inoculation volumes of 1, 3, and 5 mL of acclimatized activated sludge were taken into account. Different pH values of 3, 5, 7, 9, and 11 were examined. The experiments were conducted for temperatures of 25, 30, 35, and 40 °C and initial phenol concentrations of 400, 800, 1,000, and 1,500 ppm. The results show that the acclimatized activated sludge has a high capacity for the removal of phenol. From a 100-mL aqueous solution was removed 1,500 ppm of phenol after 80 h. Furthermore, maximum phenol removal was observed for an inoculation volume of 5 mL for three different phenol concentrations of 100, 400, and 800 ppm. The best pH was 7 for the biodegradation process, and the optimum temperature was 30 °C. It was further found that an increase in the phenol concentration increased its removal time. Moreover, the activated sludge could effectively remove about 99.9 % of phenol from a synthetic aqueous solution in a batch system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号