首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluoride incidence in groundwater in an area of Peninsular India   总被引:9,自引:0,他引:9  
Groundwater samples were collected from Anantapur District, Andhra Pradesh, India. The district is mainly underlain by Peninsular Gneisses of Archaean age. The samples were analysed for fluoride (F) along with other chemical parameters. The results suggest that the main sources of F in groundwater in the district are the country rocks, in which fluorine is strongly absorbed in soils consisting of clay minerals. A strong positive correlation between F and lithogenic sodium reflects weathering activity. This is responsible for the leaching of F, which is also caused by the semi-arid climate and intensive irrigation in the area. An alkaline environment of circulating water in the investigated area mainly facilitates leaching of Ffrom the soils, contributing to high F-containing groundwater. A longer residence time of water in the aquifer zone, caused by a high rate of evapotranspiration and a weathered zone of low hydraulic conductivity, which promotes the dissolution of fluorine-bearing minerals, is another factor that further increases the Fcontent in groundwater. Suggestions are made to improve groundwater quality and, thus, the health status of the population.  相似文献   

2.
Fluoride contamination in groundwater resources of Alleppey,southern India   总被引:1,自引:0,他引:1  
Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO_3 and Na-Cl.The aqueous concentrations of F~- and CO_3~(2-) show positive correlation whereas F~- and Ca~(2+) show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO_3 to Na-HCO_3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.  相似文献   

3.
The Global Positioning System (GPS) has become a popular sensing system for positioning because it is free and always available and can be used in all weathers. However, the accuracy of GPS is dependent on the measurement factors selected by the surveyor. Therefore, the purpose of this research is to determine the optimal factors of the GPS positioning process. The selected process variables were measurement time and duration, recording interval, and mask angle. To determine the optimum conditions of these factors, a three-level Box–Behnken design was utilized. The results indicated that the optimum conditions of the experimental factors are 13 h as measurement time, 21.77 min as the measurement duration, 22.43 s as the range interval, and 8° as the mask angle.  相似文献   

4.
5.
Groundwater is now a major source of agricultural water supply in many parts of the world. The value of groundwater as a new source of supply is well known. However, its additional buffering or stabilization value is less appreciated and even less analysed. Knowledge on groundwater’s stabilization value is advanced by developing and estimating an empirical model using the case of tank irrigation systems in Tamil Nadu, India. Unlike previous work, the model uses cross-sectional rather than time-series data. The results show that for the case-study region, the stabilization function added approximately 15% to supply value. Scenarios with surface water and electricity price were incorporated in the model. Increased surface-water supply and electricity price caused reduction in groundwater use but the percent of stabilization value of groundwater increased. The findings are used both to suggest improvements in tank irrigation systems and to further contextualize knowledge of groundwater’s stabilization value.  相似文献   

6.
The occurrence of fluoride in ground water is the focus of the public and has attracted the attention of many scientists all over the world due to its importance in public health. Deficiency or increase of fluoride uptake is considered a public health problem due to the narrow permissible limit which should not exceed 1.5 mg/l according to the World Health Organization (WHO). The range of fluoride tolerance and toxicity is narrow. Deviation from the optimal levels therefore results in dental health effects such as caries and fluorosis. Many studies have found fluorosis to be invariably associated with high concentrations of fluoride in drinking water. Fluorosis is a considerable health problem in many areas of the world including Brazil, China, East Africa, Ghana, India, Kenya, Korea, Malawi, Mexico, Pakistan, South Africa, southeastern Korea, Spain, Sri Lanka, Sudan, Taiwan, Tanzania, and Turkey. Fluoride in groundwater of Quaternary aquifer of the Nile Valley, Egypt, does not gain the attention of the authors in the Nile Valley which makes the public health status of fluoride is not certain. The present work aims at investigating the fluoride concentration of Quaternary groundwater aquifer at Luxor as a representative area of the Nile Valley to be a base line for subsequent studies and criteria for public health. Ground water samples were collected from Quaternary groundwater aquifer at Luxor area, Egypt and analyzed for the purpose of investigating fluoride content. The results showed that fluoride concentration in the study area ranges between 0.113 and 0.452 with an average of 0.242 mg/l. Sources of fluoride in the study area can result from the natural dissolution from fluoride-rich minerals, fertilizers and from groundwater recharge. It is worth mentioning that low fluoride content in the study area is considered a public health threat specially limited growth, fertility, and dental caries. Corrective measures should be taken to avoid the public health impacts of fluoride deficiency at Luxor area as well as similar areas in the Nile Valley. A public health program should be initiated to account for the deficiency of fluoride in groundwater and deal with the other supplementary fluoride sources in food or fluoridation of drinking water supplies.  相似文献   

7.
抽降地下水引起地面沉降的计算与预测   总被引:1,自引:0,他引:1  
通过理论分析,提出抽降地下水引起地面沉降的计算方法,并根据抽降承压水引起地面沉降的估算公式对沉降及差异沉降进行预测.  相似文献   

8.
High fluoride and arsenic concentrations in groundwater have led to serious health problems to local inhabitants at Yuncheng basin, Northern China. In this study, groundwater with high fluoride and arsenic concentration at Yuncheng basin was investigated. A majority of the samples (over 60%) belong to HCO3 type water. The predominant water type for the shallow groundwater collected from southern and eastern mountain areas was Ca/Mg-Ca-HCO3 types. For the shallow groundwater from flow through and discharge area it is Na-HCO3/SO4-Cl/SO4/Cl type. The predominant water type for the intermediate and deep groundwater is of Na/Ca/Mg-Ca-HCO3 type. According to our field investigation, fluoride concentration in groundwater ranges between 0.31 and 14.2 mg/L, and arsenic concentration ranges between 0.243 and 153.7 μg/L. Out of seventy collected groundwater samples, there are 31 samples that exceed the World Health Organization (WHO) standard of 1.5 mg/L for fluoride, and 15 samples exceeds the WHO standard of 10 μg/L for arsenic. Over 40% of high fluoride and arsenic groundwater are related to the Na-HCO3 type water, and the other fifty percent associated with Na-SO4-Cl/HCO3-SO4-Cl type water; little relation was found in calcium bicarbonate type water. A moderate positive correlation between fluoride and arsenic with pH were found in this study. It is due to the pH-dependent adsorption characteristics of F and As onto the oxide surfaces in the sediments. The observed negative correlation between fluoride and calcium could stem from the dissolution equilibrium of fluorite. The high concentration of bicarbonate in groundwater can serve as a powerful competitor and lead to the enrichment of fluoride and arsenic in groundwater. Most of the groundwater with high fluoride or arsenic content has nitrate content about or over 10 mg/L which, together with the observed positive correlations between nitrate and fluoride/arsenic, are indicative of common source of manmade pollution and of prevailing condition of leaching in the study area.  相似文献   

9.
Spatial variations of fluoride concentration in groundwater in the town of Saldungaray, Argentina affect water quality for human supply and decrease the aquifer reserves. The study region is a piedmont area, located near a hill area (west) and the fluvial valley of the Sauce Grande River (east). Two hydrogeological units can be identified: bedrock and clastic sediments. These sediments consist of sandy silt with a variable amount of calcium carbonate. Its greatest thickness occurs near the river where it is 60 m. Groundwater flow coincides with topography. Fresh water is exploited from this unit and it has low salt contents (dissolved solids 400 to 800 mg/l). Fluoride concentration varies between 0.2 and 5 mg/l. The groundwater flow and hydrogeological characteristics related to spatial variations of fluoride content are analyzed. The quality of water is a critical parameter in determining the overall quality of human lives, and the occurrence of high fluoride concentrations can have a pronounced impact on groundwater quality.  相似文献   

10.
Acta Geochimica - Groundwater samples were evaluated throughout Turkana County (Kenya, East Africa) while looking for drinking water sources. Some samples showed high concentrations of fluoride...  相似文献   

11.
Solute transport and chemical neutralization (pH 3 to 7) within a shallow heterogeneous aquifer producing acid mine drainage (AMD) are examined at an abandoned surface coal mine in West Virginia. The aquifer is undergoing partial neutralization by mixing with alkalinity from a leaking sludge disposal pond, extending in preferential zones controlled by aquifer heterogeneity. Hydraulic heads interpolated from wells indicate leakage from a central alkaline (pH 7.1, 0.72 meq/L alkalinity) sludge pond is a principal source of recharge. Chemically-conservative sodium, added to AMD during treatment and leaked into the aquifer with the sludge, develops a dispersion plume over a restricted portion of the aquifer that correlates with pH, hydraulic head, and dissolved metals distributions. Concentrations of aluminum, iron, sulfate and acidity display higher concentrations downgradient from the pond as sludge alkalinity is consumed along flow paths. Before reaching springs, most dissolved iron is oxidized and hydrolyzed, likely precipitating in the aquifer as a ferric hydroxide or hydroxysulfate phase. The spatial pattern of iron and aluminum concentrations suggests accelerated oxidation caused by gas transport along the outer slopes of the spoil. Dissolved aluminum concentrations increase with total acidity, suggesting that dissolution of silicate minerals results from acidity released by iron hydrolysis. Neutralization reactions and higher pH are favored in more highly permeable portions of the spoil, where ferrihydrite and aluminum hydroxysulfate minerals (such as basaluminite) are supersaturated. In acid-producing zones at pH < 4.5, jurbanite is near equilibrium and an aluminum-sulfate phase with similar properties may limit aluminum concentrations, but become undersaturated in zones of advancing neutralization. At this particular site, ferrous iron produced by pyrite oxidation is almost completely oxidized over short transport distances, allowing hydrolysis of iron and aluminum should sufficient alkalinity be added to these acid waters.  相似文献   

12.
Presence of fluoride in groundwater is a public health problem in the so-called endemic fluorosis belt of the central Iran, where the groundwater is the major source of drinking water in most urban and rural areas. Therefore, an attempt has been made to determine the hydrogeochemical factors controlling fluoride enrichment in the groundwater resources at this belt. Fluoride concentrations ranged from 0.20 to 1.99 mg/L (1.02 ± 0.47) in groundwater samples. The presence of different F-bearing minerals and also clay minerals in the soils and aquifer materials was confirmed using XRD analysis. To identify probable sources of dissolved F? and investigate groundwater quality, multivariate statistical analyses were carried out. Geochemical modeling indicated that all samples were undersaturated with respect to fluorite, halite, gypsum and anhydrite and mostly oversaturated with respect to calcite and dolomite. Contrary to most high-fluoride regions in the World, the high F? content was dominated by Na–Cl- and Ca–SO4-type groundwater in the study area. Besides, fluoride showed negative relationship with pH and HCO3 ? in groundwater. In order to assess the bioavailability of fluoride in soils, a two-step chemical fractionation method was applied. The results showed that fluoride in soils mostly accompanied with the residual and water-soluble fractions and was poorly associated with soil’s bonding sites. Calculated aqueous migration coefficient demonstrated that fluoride in the studied soils was mobile to easily leachable to the groundwater. Finally, the results demonstrated that combination of water–rock interaction and influence of clay minerals is geochemical mechanism responsible for controlling fluoride enrichment in groundwater.  相似文献   

13.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

14.
The design and testing of small,low-cost GPS-tracked surface drifters   总被引:1,自引:0,他引:1  
We have designed and constructed drifters appropriate for use in regions characterized by limited horizontal extent. The drifters follow the upper 30 cm of surface currents, but can be modified to follow water at any depth. The drifters store their latitude and longitude internally, and transmit their current latitude and longitude to a handheld Global Positioning System (GPS)-radio receiver, making their location and subsequent retrieval straight forward A field test of six drifters in Hog Island Bay, Virginia, United States, in August 2003 was successful and led to several design improvements. With simple construction and a total materials cost of under U.S.$200 this design will make drifters an accessible part of interdisciplinary experiments, provide a potentially valuable educational tool, and make experiments that require large numbers of drifters more cost-effective.  相似文献   

15.
Solute transport and chemical neutralization (pH 3 to 7) within a shallow heterogeneous aquifer producing acid mine drainage (AMD) are examined at an abandoned surface coal mine in West Virginia. The aquifer is undergoing partial neutralization by mixing with alkalinity from a leaking sludge disposal pond, extending in preferential zones controlled by aquifer heterogeneity. Hydraulic heads interpolated from wells indicate leakage from a central alkaline (pH 7.1, 0.72 meq/L alkalinity) sludge pond is a principal source of recharge. Chemically-conservative sodium, added to AMD during treatment and leaked into the aquifer with the sludge, develops a dispersion plume over a restricted portion of the aquifer that correlates with pH, hydraulic head, and dissolved metals distributions. Concentrations of aluminum, iron, sulfate and acidity display higher concentrations downgradient from the pond as sludge alkalinity is consumed along flow paths. Before reaching springs, most dissolved iron is oxidized and hydrolyzed, likely precipitating in the aquifer as a ferric hydroxide or hydroxysulfate phase. The spatial pattern of iron and aluminum concentrations suggests accelerated oxidation caused by gas transport along the outer slopes of the spoil. Dissolved aluminum concentrations increase with total acidity, suggesting that dissolution of silicate minerals results from acidity released by iron hydrolysis. Neutralization reactions and higher pH are favored in more highly permeable portions of the spoil, where ferrihydrite and aluminum hydroxysulfate minerals (such as basaluminite) are supersaturated. In acid-producing zones at pH < 4.5, jurbanite is near equilibrium and an aluminum-sulfate phase with similar properties may limit aluminum concentrations, but become undersaturated in zones of advancing neutralization. At this particular site, ferrous iron produced by pyrite oxidation is almost completely oxidized over short transport distances, allowing hydrolysis of iron and aluminum should sufficient alkalinity be added to these acid waters.  相似文献   

16.
17.
A large portion of water is consumed during various textile operations thereby discharging wastewaters with pollutants of huge environmental concern. The treatment of such wastewaters has promising impact in the field of environmental engineering. In this work, Fenton oxidation treatment was engaged to treat simulated textile wastewater. Box–Behnken design and response surface methodology were employed to optimize the efficiency of Fenton process. Iron dose, peroxide dose and pH were considered as input variables while the responses were taken as chemical oxygen demand and color removal. A total of 17 experiments were conducted and analyzed using second-order quadratic model. The quadratic models generated for chemical oxygen demand and color removal efficiencies were validated using analysis of variances, and it was found that the experimental data fitted the second-order model quite effectively. Analysis of variances demonstrated high values of coefficient of determination (R 2) for chemical oxygen demand and color removal efficiencies with values of 0.9904 and 0.9963 showing high conformation of predicted values to the experimental ones. Perturbation plots suggested that the iron dosage produced the maximum effect on both chemical oxygen demand and color removal efficiencies. The optimum parameters were determined as Fe2+ dose—550 mg/L, H2O2 dose—5538 mg/L, pH—3.3 with corresponding chemical oxygen demand and color removal efficiencies of 73.86 and 81.35%. Fenton process was found efficient in treatment of simulated textile wastewater, and optimization using response surface methodology was found satisfactory as well as relevant. From the present study, it can also be concluded that if this method is used as pretreatment integrated with biological treatment, it can lead to eco-friendly solution for treatment of textile wastewaters.  相似文献   

18.
In order to reduce the cost of the microbial-induced carbonate precipitation, mixotrophic growth of Sporosarcina pasteurii was carried out at different yeast extract/sodium acetate concentrations and constant chemical oxygen demand for optimal production of urease enzyme. Optimization of cultivation conditions was also investigated using a 3-level central composite design approach based on the response surface methodology. A good agreement between predicted values of enzyme activity and experimental results was observed (R 2 value of 0.973). All three chosen independent variables had statistically great effects on the efficiency of urease activity. The maximum activity of 2.98 mM urea min?1 was achieved at yeast extract concentration of 5 g L?1, NH4 concentration of 9.69 g L?1, and incubation time of 60 h as the optimal conditions. Thereafter, a novel injection procedure as sequencing batch mode injection has been proposed for bacteria and cementation fluid injection at obtained optimal urease activity. After fourth injection of bacteria and cementation fluid, uniform CaCO3 distribution with unconfined compression strength of 795 kPa was obtained even for poorly graded sand. The presented experimental approach for optimizing urease activity and strength production in porous media can be used to design the treatment protocol for practical engineering applications.  相似文献   

19.
采水地面沉降时空预测模型研究   总被引:2,自引:0,他引:2  
地下水开采引起的地面沉降对地面建(构)筑物的正常使用和结构安全构成了严重威胁,深入研究采水地面沉降预测理论对于沉降灾害防治具有重要意义。针对本构模型和土体参数确定上的困难,采用力学推理和数学统计相结合的方法,建立了新的采水地面沉降时空预测模型。首先,利用太沙基固结微分方程,建立了反映地面沉降时间效应的半经验计算模型;其次,在分析采水地面沉降空间分布规律的基础上,利用随机介质理论研究了采水地面沉降空间分布特征;再次,综合考虑采水地面沉降的时间效应和空间分布形态,建立了采水地面沉降的时空预测模型。利用该模型计算地面沉降共需4个计算参数,介绍了参数求解方法。最后,利用时空计算模型预测了某地单井采水引起地面沉降的时空规律。研究表明,所建立的采水地面沉降预测模型能准确地反映采水地面沉降的时空规律,能方便、快捷地预测地下水开采引起的地面沉降。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号