共查询到20条相似文献,搜索用时 15 毫秒
1.
A Holocene tephra record from the Lofoten Islands, Arctic Norway 总被引:2,自引:0,他引:2
JON PILCHER RAYMOND S. BRADLEY PIERRE FRANCUS LESLEIGH ANDERSON 《Boreas: An International Journal of Quaternary Research》2005,34(2):136-156
Pilcher, J., Bradley, R. S., Francus, P. & Anderson, L. 2005 (May): A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas , Vol. 34, pp. 136–156. Oslo. ISSN 0300–9483.
A tephrochronology has been established for a peat bog in the Lofoten Islands that provides a dating framework for future lake and bog studies of climate variation in this climatically sensitive area. Twenty-three tephra layers were identified, all apparently of Icelandic origin. These included the historically dated tephras of AD 1875 (Askja), AD 1362 (Öraefajökull), AD 1158 (Hekla), AD 1104 (Hekla) and the Landnam tephra identified at AD 875 in the GRIP ice core. Other layers, previously radiocarbon dated in Ireland and elsewhere, include the Hekla eruptions of c. 2310 BC and c. 5990 BC. The basal clays below the peat contain tephra of both the Askja eruption of c. 9500 BC (10 000 radiocarbon years BP) and the well-known Vedde Ash of c. 12 000 BP (10 030 80 BC in GRIP ice core). 相似文献
A tephrochronology has been established for a peat bog in the Lofoten Islands that provides a dating framework for future lake and bog studies of climate variation in this climatically sensitive area. Twenty-three tephra layers were identified, all apparently of Icelandic origin. These included the historically dated tephras of AD 1875 (Askja), AD 1362 (Öraefajökull), AD 1158 (Hekla), AD 1104 (Hekla) and the Landnam tephra identified at AD 875 in the GRIP ice core. Other layers, previously radiocarbon dated in Ireland and elsewhere, include the Hekla eruptions of c. 2310 BC and c. 5990 BC. The basal clays below the peat contain tephra of both the Askja eruption of c. 9500 BC (10 000 radiocarbon years BP) and the well-known Vedde Ash of c. 12 000 BP (10 030 80 BC in GRIP ice core). 相似文献
2.
3.
Stefan Wastegrd 《第四纪科学杂志》2002,17(8):723-730
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
4.
Ionel Florin Pendea André Costopoulos Colin Nielsen Gail Lois Chmura 《Quaternary Research》2010,73(3):474-484
The shoreline displacement history of the eastern James Bay lowlands in the last 7 ka has been investigated by means of AMS radiocarbon dating of sediments cored from wetlands. We present twelve radiocarbon dates on macrofossils from six sites spread along a gradient of increasing land age and elevation. Palynomorph analysis (pollen, spores, and dinoflagellate cysts) was used to define the isolation stratigraphy. During the last 7 ka the shoreline elevation has regressed at a decreasing rate. The rate of shoreline emergence was initially rapid (6. 5 m/ 100 yr) between 6850 and 6400 cal yr BP then slowed down to 1.4– 2 m/ 100 yr during the late Holocene. Examination of previous relative sea level data based upon mollusc shells reveals high levels of uncertainty that mask potential temporal variability. 相似文献
5.
H. P. Sejrup H. Haflidason T. Flateb D. Klitgaard Kristensen K. Grsfjeld E. Larsen 《第四纪科学杂志》2001,16(2):181-198
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
6.
7.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
8.
The coastal hard rock with a thickness of over 5 m and a distribution area of nearly 200 ha in the Haishan Island, south China, has long drawn researchers’ attention. However, there were controversies over its formation and classification, and these controversies in turn lead to the dispute of sea level changes and coastal uplift-subsidence of this area. To investigate its diagenesis and evolution, petrographic analysis, elemental geochemistry, isotopic analysis, and radiocarbon dating were used in the present study. Radiocarbon dating indicates that the deposition of the Haishan Coquinite commenced in the mid Holocene and lasted to ~600 a B.P. Petrographic analysis shows that the Haishan Coquinite is cemented by low-Mg calcite, indicating that the cementation occurred in a meteoric environment. The elemental geochemistry and isotopic values demonstrate that the coquinite suffered strong leaching, which was thought to be responsible for the meteoric cementation of the coquinite. According to these results, the diagenesis of the coquinite is revealed: deposition of the Haishan Coquinite commenced in the mid Holocene in a shoal environment, initial cementation occurred and cement may be high-Mg calcite or aragonite; latterly the coquinite exposed to meteoric environment as a result of lowering of relative sea level, and the cement altered to low-Mg, which took the morphologies of bladed calcite rim and equant spar. A four-stage evolution model is proposed: (1) deposition stage, (2) initial cementation, (3) exposure to and cementation in meteoric environment, and (4) erosion stage. The published reports indicate that the hard rock should be designated as coquinite. Based on these studies, mid-Holocene sea level in this area was discussed, and the Haishan Island was proposed to uplift with a rate of ~5 mm/a in the last ~600 a. 相似文献
9.
SUN Jinlong XU Huilong QIU Xuelin ZHAN Wenhuan LI Yamin CAS Key Laboratory of Marginal Sea Geology South China Sea Institute of Oceanology the Chinese Academy of Sciences Guangzhou Guangdong China Graduate University of the Chinese Academy of Sciences Beijing China 《《地质学报》英文版》2009,83(1)
The coastal hard rock with a thickness of over 5 m and a distribution area of nearly 200 ha in the Haishan Island,south China,has long drawn researchers' attention.However,there were controversies over its formation and classification,and these controversies in turn lead to the dispute of sea level changes and coastal uplift-subsidence of this area.To investigate its diagenesis and evolution,petrographic analysis,elemental geochemistry,isotopic analysis,and radiocarbon dating were used in the present stu... 相似文献
10.
Denis Wirrmann Anne-Marie Sémah Jean-Pierre Debenay Magali Chacornac-Rault 《Quaternary Research》2011,76(2):229-242
Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact. 相似文献
11.
Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance 总被引:1,自引:0,他引:1
We present a relative sea-level (RSL) history, constrained by AMS radiocarbon-dated marine-freshwater transitions in isolation basins from a site adjacent to the Lambert Glacier, East Antarctica. The RSL data suggest an initial ice retreat between c. 15,370 and 12,660 cal yr B.P.. Within this period, meltwater pulse IA (mwp IA, between c. 14,600-14,200 and 14,100-13,700 cal yr B.P.) occurred; an exceptionally large ice melting event, inferred from far-field sea-level records. The RSL curve shows a pronounced highstand of approximately 8 m between c. 7570-7270 and 7250-6950 cal yr B.P. that is consistent with the timing of the RSL highstand in the nearby Vestfold Hills. This is followed by a fall in RSL to the present. In contrast to previous findings, the isolation of the lakes in the Larsemann Hills postdates the isolation of lakes with similar sill heights in the Vestfold Hills. An increase in RSL fall during the late Holocene may record a decline in the rate of isostatic uplift in the Larsemann Hills between c. 7250-6950 and 2847-2509 cal yr B.P., that occurred in response to a documented mid-Holocene glacier readvance followed by a late-Holocene retreat. 相似文献
12.
KIM M. COHEN 《Sedimentology》2011,58(6):1453-1485
This study presents a detailed reconstruction of the palaeogeography of the Rhine valley (western Netherlands) during the Holocene transgression with systems tracts placed in a precise sea‐level context. This approach permits comparison of actual versus conceptual boundaries of the lowstand, transgressive and highstand systems tracts. The inland position of the highstand Rhine river mouth on a wide, low‐gradient continental shelf meant that base‐level changes were the dominant control on sedimentation for a relatively short period of the last glacial cycle. Systems in such inland positions predominantly record changes in the balance between river discharge and sediment load, and preserve excellent records of climatic changes or other catchment‐induced forcing. It is shown here that the transgressive systems tract‐part of the coastal prism formed in three stages: (i) the millennium before 8·45 ka bp , when the area was dominated by fluvial environments with extensive wetlands; (ii) the millennium after 8·45 ka, characterized by strong erosion, increasing tidal amplitudes and bay‐head delta development; and (iii) the period between 7·5 and 6·3 ka bp when the Rhine avulsed multiple times and the maximum flooding surface formed. The diachroneity of the transgressive surface is strongly suppressed because of a pulse of accelerated sea‐level rise at 8·45 ka bp . That event not only had a strong effect on preservation, but has circum‐oceanic stratigraphical relevance as it divides the early and middle Holocene parts of coastal successions worldwide. The palaeogeographical reconstruction offers a unique full spatial–temporal view on the coastal and fluvial dynamics of a major river mouth under brief rapid forced transgression. This reconstruction is of relevance for Holocene and ancient transgressive systems worldwide, and for next‐century natural coasts that are predicted to experience a 1 m sea‐level rise. 相似文献
13.
William Helland-Hansen Christopher GSt C. Kendall Ian Lerche Kazuo Nakayama 《Mathematical Geology》1988,20(7):777-802
As eustasy, subsidence, and sediment accumulation vary, a 2D computer-based graphical simulation generates on-lapping and off-lapping geometries of both marine and near coastal alluvial deposits, reproducing timelines within sediment-bodies at basin margins. In the simulation, deposition is expressed by creation of new surfaces above previous ones. Thicknesses of layers are reduced by both erosion and compaction while their surfaces move vertically in response to tectonic change and loading. Simulation is divided into a series of equal time steps in which sediment is deposited as an array of en-echelon columns that mark the top of the previous depositional surface. The volume of sediment deposited in each time step is expressed as a 2D cross section and is derived from two right-angle triangles (sand and shale), whose areas are a 2D expression of the quantity of sediment deposited at that time step and whose length matches the width of the offshore sediment wedge seaward of the shoreline. Each column in the array is filled by both marine sediments up to sea level, and alluvial sediments to a surface determined by an alluvial angle that is projected landward from the shore to its intersection with the previous surface. Each time the area representing the sediment column is subtracted from the triangles, the triangle heights are reduced correspondingly. This process is repeated until the triangle heights match the position of sea level above the sediment surface, at which time the remaining area of the sediment triangle is deposited seaward as a single wedge of offshore sediments. This simulation is designed to aid interpretation of stratigraphic sequences. It can be used as a complement to seismic stratigraphy or can be used alone as an inexpensive test of stratigraphic models. 相似文献
14.
In spite of a widespread distribution, the way in which plateau icefields affect the glaciation and deglaciation of adjacent terrains is not particularly well‐known. This paper aims to identify how the deglaciation of the fjord and plateau terrain of north Norway has influenced the glacial geomorphology and relative sea‐level history of both local and adjacent areas and so serve as a model for interpreting similar areas along the continental margins of northwest Europe and elsewhere. The identification of moraines and their relationships with the Main shoreline of northern Norway allows the margins of the Øksfjordjøkelen, Svartfjelljøkelen and Langfjordjøkelen plateau icefields to be identified in the adjacent terrains. In locations where ice margins are uncertain, it is also possible to reconstruct ice limits by means of glacier models appropriately constrained by known local conditions and dates. Earlier glacier margins, characterised in north Norway by ice shelves floating in the local inlets of major fjords, also can be related to known regional shorelines. The distribution of high shoreline fragments, augmented by radiocarbon dates, helps show the extent to which inter‐island channels and outermost parts of fjords can become deglaciated relatively early in comparison with published maps of regional deglaciation. Plateau‐icefield‐centred glaciation became important sometime after 14 000 14C yr BP and was characterised by glacier readvances up to, and in some locations beyond, earlier moraines and raised marine features. Although overlooked until recently, the identification of the influence of plateau icefields on local glaciation, and their interaction with local and regional marine limits, is of great importance in accurate palaeoenvironmental reconstruction. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
15.
Herein we document and interpret an absolute chronological dating attempt using geomagnetic paleointensity data from a post-glacial sediment drape on the western Antarctic Peninsula continental shelf. Our results demonstrate that absolute dating can be established in Holocene Antarctic shelf sediments that lack suitable material for radiocarbon dating. Two jumbo piston cores of 10-m length were collected in the Western Bransfield Basin. The cores preserve a strong, stable remanent magnetization and meet the magnetic mineral assemblage criteria recommended for reliable paleointensity analyses. The relative paleomagnetic intensity records were tuned to published absolute and relative paleomagnetic stacks, which yielded a record of the last ∼8500 years for the post-glacial drape. Four tephra layers associated with documented eruptions of nearby Deception Island have been dated at 3.31, 3.73, 4.44, and 6.86 ± 0.07 ka using the geomagnetic paleointensity method. This study establishes the dual role of geomagnetic paleointensity and tephrochronology in marine sediments across both sides of the northern Antarctic Peninsula. 相似文献
16.
Lateglacial to Holocene relative sea‐level changes in the Stykkishólmur area,northern Snæfellsnes,Iceland 下载免费PDF全文
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum. 相似文献
17.
Elizabeth A. V. Mackie Jeremy M. Lloyd Melanie J. Leng Michael J. Bentley Carol Arrowsmith 《第四纪科学杂志》2007,22(6):579-591
Carbon isotopes (δ13C) and C/N ratios from bulk organic matter have recently been used as alternative proxies for relative sea‐level (RSL) reconstruction where there are problems associated with conventional biological indictors. A previous study on a single isolation basin (Upper Loch nan Eala) in northwest Scotland has shown a clear relationship between δ13C, C/N ratios and palaeosalinity from Younger Dryas and Holocene aged sediments. In this paper we present results of δ13C and C/N ratio analyses from other isolation basins in northwest Scotland over the Holocene and the Lateglacial period in order to validate this technique. The results from the Holocene sequences support the earlier findings that this technique can be used to identify RSL change from isolation basins over the Holocene in this region. The relationship between δ13C, C/N ratios and RSL change is not apparent in sediments of Lateglacial age. Other environmental variables such as atmospheric CO2 concentration, poor vegetation development and temperature influence δ13C values during this period. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
18.
The first detailed investigation of a deep, coastal, sedimentary basin in Orkney reveals a complex Holocene history of back‐barrier morphodynamics. At Scapa Bay, the sea flooded a freshwater marsh after ca. 9400 yr BP at ca. ?5.4 m OD. Before ca. 7800 BP, abundant sediment from nearby cliffs was mobilised inland into a series of gravel barriers across the valley mouth. By ca. 7500 BP, direct marine influence was restricted in the back‐barrier area, although saltmarsh persisted until ca. 5900 BP. By then, at least four gravel ridges had enclosed the backing lagoon, where freshwater inputs became dominant. As terrestrial sediments filled the basin, another freshwater marsh developed. The multiple barrier complex demonstrates progradation resulting from continuous sediment supply in a sheltered embayment. The progressively rising height of the barrier crests seawards probably resulted from a combination of factors such as barrier morphodynamics, increased storminess and long‐term rising relative sea levels. The dominant vegetation surrounding Scapa Bay changed from open grassland to scrub ca. 9400 BP, then to deciduous woodland ca. 7800 BP, and to dwarf‐shrub heath ca. 2600 BP, the latter probably a response to a combination of climate change and human activity. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
19.
《International Geology Review》2012,54(16):2030-2059
Seismic and sequence stratigraphic analysis of deep-marine forearc basin fill (Great Valley Group) in the central Sacramento Basin, California, reveals eight third-order sequence boundaries within the Cenomanian to mid-Campanian second-order sequences. The third-order sequence boundaries are of two types: Bevelling Type, a relationship between underlying strata and onlapping high-density turbidites; and Entrenching Type, a significantly incised surface marked by deep channels and canyons carved during sediment bypass down-slope. Condensed sections of hemipelagic strata draping bathymetric highs and onlapped by turbidites form a third important type of sequence-bounding element, Onlapped Drapes. Five tectonic and sedimentary processes explain this stratigraphic architecture: (1) subduction-related tectonic tilting and deformation of the basin; (2) avulsion of principal loci of submarine fan sedimentation in response to basin tilting; (3) deep incision and sediment bypass; (4) erosive grading and bevelling of tectonically modified topography by sand-rich, high-density turbidite systems; and (5) background hemipelagic sedimentation. The basin-fill architecture supports a model of subduction-related flexure as the principal driver of forearc subsidence and uplift during the Late Cretaceous. Subduction-related tilting of the forearc and growth of the accretionary wedge largely controlled whether and where the Great Valley turbiditic sediments accumulated in the basin. Deeply incised surfaces of erosion, including submarine canyons and channels, indicate periods of turbidity current bypass to deeper parts of the forearc basin or the trench. Fluctuations in sediment supply likely also played an important role in evolution of basin fill, but effects of eustatic fluctuations were overwhelmed by the impact of basin tectonics and sediment supply and capture. Eventual filling and shoaling of the Great Valley forearc during early Campanian time, coupled with dramatically reduced subsidence, correlate with a change in plate convergence, presumed flat-slab subduction, cessation of Sierran arc volcanism, and onset of Laramide orogeny in the retroarc. 相似文献
20.
Raphaël Paris Simon Falvard Catherine Chagué James Goff Samuel Etienne Pascal Doumalin 《Sedimentology》2020,67(3):1207-1229
X-ray tomography is used to analyse the grain size and sedimentary fabric of two tsunami deposits in the Marquesas Islands (French Polynesia, Pacific Ocean) which are particularly exposed to trans-Pacific tsunamis. One site is located on the southern coast of Nuku Hiva Island (Hooumi) and the other one is on the southern coast of Hiva Oa Island (Tahauku). Results are compared with other techniques such as two-dimensional image analysis on bulk samples (particle analyser) and anisotropy of magnetic susceptibility. The sedimentary fabric is characterized through three-dimensional stacks of horizontal slices (following a vertical step of 2·5 mm along the cores), while grain-size distribution is estimated from two-dimensional vertical slices (following a step of 2 mm). Four types of fabric are distinguished: (a) moderate to high angle (15 to 75°); (b) bimodal low-angle (<15°); (c) low to high angle with at least two different orientations; and (d) dispersed fabric. The fabric geometry in a tsunami deposit is not only controlled by the characteristics of the flow itself (current strength, flow regime, etc.) but also sediment concentration, deposition rate and grain-size distribution. There is a notable correlation between unimodal high-angle fabric – type (a) – and finely-skewed grain-size distribution. The two tsunami deposits studied represent two different scenarios of inundation. As demonstrated here, X-ray tomography is an essential method for characterizing past tsunamis from their deposits. The method can be applied to many other types of sediments and sedimentary rocks. 相似文献