首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Attitude control systems for autonomous underwater vehicles are often implemented with separate controllers for pitch motion in the vertical plane and yaw motion in the horizontal plane. We propose a novel time-varying model for a streamlined autonomous underwater vehicle that explicitly displays the coupling between yaw and pitch motion due to nonzero roll angle and/or roll rate. The model facilitates the use of a multi-input multi-output H control design that is robust to yaw-pitch coupling. The efficacy of our approach is demonstrated with field trials.  相似文献   

2.
近年来微气泡减阻技术应用于水面舰船的相关研究取得重要进展,许多舰船已经采用了此类技术。然而该技术在潜航器上的应用整体上仍处于理论分析和试验测试阶段。以回转体潜航器简化模型为研究对象,利用多孔介质来简化喷气小孔,并结合不可压缩水体和可压缩理想气体的流体体积(VOF)方法,建立了Realizable ε-k湍流计算模式。通过拖曳试验验证了多孔介质等效喷气小孔的合理性和数值模式的准确性,结合试验和数值结果探究了微气泡减阻技术对潜航器航行阻力的影响。数值结果显示,气泡对潜航器尾流低速区的改变使尾部压力分布产生变化从而导致压差阻力增高。同时气泡可以显著降低其覆盖区域的黏性阻力。并且随着来流速度的提高,气泡覆盖范围扩大,黏性减阻率持续增加。进一步地,建立了加长改进模型,数值模拟结果表明,微气泡减阻技术不仅能大幅减小黏性阻力,还能有效减小模型总阻力。  相似文献   

3.
A theoretical methodology to determine the open-loop directional stability of a near-surface underwater vehicle is presented. It involves a solution of coupled sway and yaw equations of motion in a manner similar to that carried out for surface ships. The stability derivatives are obtained numerically through simulation of motions corresponding to planar motion mechanism (PMM) model tests. For the numerical simulation, a boundary-integral method based on the mixed Lagrangian-Eulerian formulation is developed. The free-surface effect on the vehicle stability is determined by comparing the results with that obtained for vehicle motion in infinite fluid. The methodology was used to determine the stability of the Florida Atlantic University’s Ocean EXplorer (OEX) AUV. The presence of the free surface, through radiation damping, is found to suppress unsteady oscillations and thereby enhance the directional stability of the vehicle. With effects of free surface, forward speed, location and geometry of rudders, location of the center of gravity etc. all being significant factors affecting stability, a general conclusion cannot be drawn on their combined effect on the vehicle stability. The present computational methodology is therefore a useful tool to determine an underwater vehicle’s stability for a given configuration and thus the viability of an intended mission a priori.  相似文献   

4.
The paper presents a conceptual design of an underwater star wars’ system, which will be more difficult to detect by the enemy than a recently proposed ‘surface’ star wars’ system.The paper suggests that for the proposed structures needed for the underwater star wars’ system, the material of construction should be a composite and not a metal, as use of the latter for large deep diving underwater vessels will result in such structures sinking to the bottom of the ocean like stones, due to the fact that they will have no reserve buoyancy. The paper also shows that composites have better sound absorption characteristics, thereby making the underwater structures difficult to detect through sonar equipment. It is proposed that these underwater structures should operate up to a depth of 7.16 miles (11.52 km), as at this depth, all of the oceans’ bottoms can be reached.The author shows that current technology can be used to construct and operate such vessels, but more progress needs to be made with metal matrix and ceramic composites, so that the hulls of underwater missiles and torpedoes can be constructed in these materials.  相似文献   

5.
Z. Feng  R. Allen 《Ocean Engineering》2004,31(8-9):1019-1035
This paper presents a numerical scheme to evaluate the effects of the communication cable attached to an underwater flight vehicle. Both simulation and model validation results show that the numerical scheme is effective and provides a means for developing a feed-forward controller to compensate for the cable effects when developing an autopilot for the tethered vehicle. Moreover, the numerical scheme can also be applied to predict the effects of the ROVs umbilical during its deployment.  相似文献   

6.
汤士华  李硕  吴清潇  李一平  张奇峰 《海洋工程》2006,24(2):112-117122
以7 000 m载人潜水器的工程需求为背景,以水下单目摄像机为视觉传感器,进行了水下机器人动力定位方法研究。该动力定位方法利用视觉系统测量得到水下机器人与被观察目标之间的三维位姿关系,通过路径规划、位置控制和姿态控制分解,逐步使机器人由初始位姿逼近期望位姿并最终定位于期望位姿,从而实现了机器人的4自由度动力定位。通过水池实验验证了提出的动力定位方法,并且机器人能够抵抗恒定水流干扰和人工位置扰动。同时,该动力定位方法还可以实现机器人对被观察目标的自动跟踪。  相似文献   

7.
This paper addresses the problem of simultaneous depth tracking and attitude control of an underwater towed vehicle. The system proposed uses a two-stage towing arrangement that includes a long primary cable, a gravitic depressor, and a secondary cable. The towfish motion induced by wave driven disturbances in both the vertical and horizontal planes is described using an empirical model of the depressor motion and a spring-damper model of the secondary cable. A nonlinear, Lyapunov-based, adaptive output feedback control law is designed and shown to regulate pitch, yaw, and depth tracking errors to zero. The controller is designed to operate in the presence of plant parameter uncertainty. When subjected to bounded external disturbances, the tracking errors converge to a neighbourhood of the origin that can be made arbitrarily small. In the implementation proposed, a nonlinear observer is used to estimate the linear velocities used by the controller thus dispensing with the need for costly sensor suites. The results obtained with computer simulations show that the controlled system exhibits good performance about different operating conditions when subjected to sea-wave driven disturbances and in the presence of sensor noise. The system holds promise for application in oceanographic missions that require depth tracking or bottom-following combined with precise vehicle attitude control.  相似文献   

8.
Olfactory-based mechanisms have been hypothesized for biological behaviors including foraging, mate-seeking, homing, and host-seeking. Autonomous underwater vehicles (AUVs) capable of such chemical plume tracing feats would have applicability in searching for environmentally interesting phenomena, unexploded ordinance, undersea wreckage, and sources of hazardous chemicals or pollutants. This article presents an approach and experimental results using a REMUS AUV to find a chemical plume, trace the chemical plume to its source, and maneuver to reliably declare the source location. The experimental results are performed using a plume of Rhodamine dye developed in a turbulent, near-shore, oceanic fluid flow.  相似文献   

9.
Study of a jet-propulsion method for an underwater vehicle   总被引:1,自引:0,他引:1  
This paper investigates a novel jet-propulsion method for a submerged vehicle. The approach is based on flexible-tube, eccentric rotor, Downingtown-Huber type pumps. Equations of motion are derived for a craft driven by such pumps. In order to develop general insight into the overall dynamics of the system, simulations are carried out for the simple case of horizontal straight-line motion. Results are obtained for the vehicle velocity, distance traveled, pump speed, and energy consumption. Effect of drag forces on the operation of the craft is studied. Finally, the jet-propulsion system is compared with conventional screw-type propulsors via simulation.  相似文献   

10.
开架式水下机器人运动的模糊非线性PD控制方法   总被引:4,自引:0,他引:4  
由于水下机器人系统的非线性动力学特性和工作环境的复杂性和不确定性,如何更好地设计水下机器人作业时的运动控制器一直是其实用化过程中没能得到很好解决的问题。结合模糊逻辑和S面控制,利用T—S推理结构,设计了一种兼具局部和全局调整功能的模糊非线性PD(m)控制器,仿真结果表明,其控制效果要优于采用单一控制参数的S面控制器。  相似文献   

11.
12.
Kinematic global positioning system (GPS) positioning and underwater acoustic ranging can combine to locate an autonomous underwater vehicle (AUV) with an accuracy of /spl plusmn/30cm (2-/spl sigma/) in the global International Terrestrial Reference Frame 2000 (ITRF2000). An array of three precision transponders, separated by approximately 700 m, was established on the seafloor in 300-m-deep waters off San Diego. Each transponder's horizontal position was determined with an accuracy of /spl plusmn/8 cm (2-/spl sigma/) by measuring two-way travel times with microsecond resolution between transponders and a shipboard transducer, positioned to /spl plusmn/10 cm (2-/spl sigma/) in ITRF2000 coordinates with GPS, as the ship circled each seafloor unit. Travel times measured from AUV to ship and from AUV to transponders to ship were differenced and combined with AUV depth from a pressure gauge to estimate ITRF2000 positions of the AUV to /spl plusmn/1 m (2-/spl sigma/). Simulations show that /spl plusmn/30 cm (2-/spl sigma/) absolute positioning of the AUV can be realized by replacing the time-difference approach with directly measured two-way travel times between AUV and seafloor transponders. Submeter absolute positioning of underwater vehicles in water depths up to several thousand meters is practical. The limiting factor is knowledge of near-surface sound speed which degrades the precision to which transponders can be located in the ITRF2000 frame.  相似文献   

13.
A randomized kinodynamic path planning algorithm based on the incremental sampling-based method is proposed here as the state-of-the-art in this field applicable in an autonomous underwater vehicle. Designing a feasible path for this vehicle from an initial position and velocity to a target position and velocity in three-dimensional spaces by considering the kinematic constraints such as obstacles avoidance and dynamic constraints such as hard bounds and non-holonomic characteristic of AUV are the main motivation of this research. For this purpose, a closed-loop rapidly-exploring random tree (CL-RRT) algorithm is presented. This CL-RRT consists of three tightly coupled components: a RRT algorithm, three fuzzy proportional-derivative controllers for heading and diving control and a six degree-of-freedom nonlinear AUV model. The branches of CL-RRT are expanded in the configuration space by considering the kinodynamic constraints of AUV. The feasibility of each branch and random offspring vertex in the CL-RRT is checked against the mentioned constraints of AUV. Next, if the planned branch is feasible by the AUV, then the control signals and related vertex are recorded through the path planner to design the final path. This proposed algorithm is implemented on a single board computer (SBC) through the xPC Target and then four test-cases are designed in 3D space. The results of the processor-in-the-loop tests are compared by the conventional RRT and indicate that the proposed CL-RRT not only in a rapid manner plans an initial path, but also the planned path is feasible by the AUV.  相似文献   

14.
A discrete time-delay control (DTDC) law for a general six degrees of freedom unsymmetric autonomous underwater vehicle (AUV) is presented. Hydrodynamic parameters like added mass coefficients and drag coefficients, which are generally uncertain, are not required by the controller. This control law cancels the uncertainties in the AUV dynamics by direct estimation of the uncertainties using time-delay estimation technique. The discrete-time version of the time-delay control does not require the derivative of the system state to be measured or estimated, which is required by the continuous-time version of the controller. This particularly provides an advantage over continuous-time controller in terms of computational effort or availability of sensors for measuring state derivatives, i.e., linear and angular accelerations. Implementation issues for practical realization of the controller are discussed. Experiments on a test-bed AUV were conducted in depth, pitch, and yaw degrees of freedom. Results show that the proposed control law performs well in the presence of uncertainties.  相似文献   

15.
Fuzzy logic controller (FLC) performance is greatly dependent on its inference rules. In most cases, the more rules being applied to an FLC, the accuracy of the control action is enhanced. Nevertheless, a large set of rules requires more computation time. As a result, an FLC implementation requires fast and high performance processors. This paper describes a simplified control scheme to design a fuzzy logic controller (FLC) for an underwater vehicle namely, deep submergence rescue vehicle (DSRV). The proposed method, known as the single input fuzzy logic controller (SIFLC), reduces the conventional two-input FLC (CFLC) to a single input FLC. The SIFLC offers significant reduction in rule inferences and simplifies the tuning process of control parameters. The performance of the proposed controller is validated via simulation by using the marine systems simulator (MSS) on the Matlab/Simulink® platform. During simulation, the DSRV is subjected to ocean wave disturbances. The results indicate that the SIFLC, Mamdani and Sugeno type CFLC give identical response to the same input sets. However, an SIFLC requires very minimum tuning effort and its execution time is in the orders of two magnitudes less than CFLC.  相似文献   

16.
The main objective of this work is to investigate the effects of the damping level as well as different excitation forms on the overall prediction of the hydrodynamic parameters in the equations describing the coupled heave and pitch motions for an Underwater Robotic Vehicle (URV) sailing near the sea surface in random waves. The response of an underwater vehicle heaving and pitching in random waves having wide-band and narrow-band spectra are generated. The RDLRNNT technique is used to identify the hydrodynamic parameters in the equations. The technique is based on a combination of a multiple linear regression algorithm and a neural networks technique. The combination of the classical parametric identification techniques and the neural networks technique provides robust results and does not require a large amount of computer time. The identification technique would be particularly useful in identifying the parameters for both moderately and lightly damped motions under the action of unknown excitations effected by a realistic sea. It is shown that the developed technique produces reliable results for the parameters in the equations describing the coupled heave and pitch motions for a URV.  相似文献   

17.
An underwater vehicle typically has various appendages such as sail, rudders and hydroplanes. These appendages affect the hull hydrodynamic characteristics, including the resistance components and the form of the generated wave due to the motion of the vehicle near the free surface. The effect of the appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface is studied. Initially the DARPPA SUBOFF submarine without the appendages is selected and hydrodynamic characteristics, including the friction resistance, viscous pressure resistance, wave resistance and shape of the created wave on the free surface are calculated for Froude numbers in the range of 0.128–0.84 and non-dimensional submergence depths 1.3, 2.2, 3.3 & 4.4. Then, by adding the appendages and comparing these two conditions, the effect of appendages is obtained. The results of computations indicate that the appendages cause a mean increase of about 16% in the total resistance. This increment is due to viscosity of fluid and also the interaction of the main hull with the appendages. There are no significant changes in the wave pattern and wave making resistance due to the presence of appendages.  相似文献   

18.
In this paper, adaptive control of low speed bio-robotic autonomous underwater vehicles (BAUVs) in the dive plane using dorsal fins is considered. It is assumed that the model parameters are completely unknown and only the depth of the vehicle is measured for feedback. Two dorsal fins are mounted in the horizontal plane on either side of the BAUV. The normal force produced by the fins, when cambered, is used for the maneuvering. The BAUV model considered here is non-minimum phase. An indirect adaptive control system is designed for the depth control using the dorsal fins. The control system consists of a gradient based identifier for online parameter estimation, an observer for state estimation, and an optimal controller. Simulation results are presented which show that the adaptive control system accomplishes precise depth control of the BAUV using dorsal fins in spite of large uncertainties in the system parameters.  相似文献   

19.
This paper introduces an underwater docking procedure for the test-bed autonomous underwater vehicle (AUV) platform called ISiMI using one charge-coupled device (CCD) camera. The AUV is optically guided by lights mounted around the entrance of a docking station and a vision system consisting of a CCD camera and a frame grabber in the AUV. This paper presents an image processing procedure to identify the dock by discriminating between light images, and proposes a final approach algorithm based on the vision guidance. A signal processing technique to remove noise on the defused grabbed light images is introduced, and a two-stage final approach for stable docking at the terminal instant is suggested. A vision-guidance controller was designed with conventional PID controllers for the vertical plane and the horizontal plane. Experiments were conducted to demonstrate the effectiveness of the vision-guided docking system of the AUV.  相似文献   

20.
An axisymmetric underwater vehicle (UV) at a steady drift angle experiences the complex three-dimensional crossflow separation. This separation arises from the unfavorable circumferential pressure gradient developed from the windward side toward the leeward side. As is well known, the separated flow in the leeward side gives rise to the formation of a pair of vortices, which affects considerably the forces and moments acting on the UV. In this regard, the main purpose of the present study is to evaluate the role of the leeward vortical flow structure in the hydrodynamic behavior of a shallowly submerged UV at a moderate drift angle traveling beneath the free surface. Accordingly, the static drift tests are performed on the SUBOFF UV model using URANS equations coupled with a Reynolds stress turbulence model. The simulations are carried out in the commercial code STARCCM+ at a constant advance velocity based on Froude number equal to Fn = 0.512 over submergence depths and drift angles ranging from h = 1.1D to h = ∞ and from β = 0 to β = 18.11°, respectively. The validation of the numerical model is partially conducted by using the existing experimental data of the forces and moment acting on the totally submerged bare hull model. Significant interaction between the low-pressure region created by the leeward vortical flow structure and the free surface is observed. As a result of this interaction, the leeward vortical flow structure appears to be largely responsible for the behavior of the forces and moments exerted on a shallowly submerged UV at steady drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号