首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
徐辉龙 《华南地震》2003,23(4):24-36
1995年日本新泻北部M6.0地震发生在新泻地震空区的东部边缘.由于此次地震震源较浅(10 km),造成了55栋房屋倒塌、165栋房屋半倒.通过计算倾倒墓碑的地震矩,对本区地震烈度进行了分析,发现烈度6度区(据日本JMA度)为一覆盖面积6.1×1 km2,呈NNE-SSW向分布的条带,表明震中区的冲积平原下存在一条隐伏断层.震中区地下水的温度、电导率和Cl-浓度等异常区与呈线性分布的6度烈度区大致吻合,也有力地证明了震中区下面存在一条隐伏断层.这次地震可能是由高压型热水系沿隐伏活动断层喷溢引起.带着高温的高压热水降低了岩石的断裂强度,从而触发了地震.  相似文献   

2.
The 1995 Northern Niigata Earthquake (M 6.0) occurred at a shallow depth in the Niigata seismic gap. The anomaly areas in temperature, electrical conductivity and Cl- concentration of groundwater trend northeast as linear distribution in the epicentral area and are approximately coincident with the area of the seismic intensity 6 (JMA scale). The distributions of seismic intensity 6 and groundwater anomalies convincingly imaged the presence of a buried active fault beneath the epicentral area. The occurrence of this earthquake and the anomalies of groundwater were related to the expulsion of geopressured hydrothermal system (GHS). All epicenters of the destructive earthquakes along the Shinanogawa seismic belt are actually located in the buried active fault zones characterized by the areas of temperature and geochemical anomalies of groundwater. These earthquakes might have been triggered by the activity of GHS. The expulsion of GHS along an active fault in combination with the thermal softening of fault  相似文献   

3.
Hui-Long  Xu  Jian-Wei  Shen Xue-Wu  Zhou 《Island Arc》2006,15(1):199-209
Abstract   Geothermal waters in the Niigata Sedimentary Basin, central Japan, are divided into four groups based on their chemical composition (i.e. Na-SO4-type, Na-SO4-Cl-type, Na-Cl-type and Na-Cl-HCO3-type). The Na-SO4-type geothermal water forms as a consequence of water–rock interaction and generally occurs in the outer part of the basin. The Na-Cl-type geothermal water is further subdivided into the original Na-Cl-type geopressured thermal water and the mixed Na-Cl-type geothermal water, in terms of its geochemical and isotopic composition. The original Na-Cl-type geopressured thermal water originates from a geopressured hydrothermal system containing the altered fossil formation waters that are sealed at depth. It moves up to the upper part of the depositional succession or the ground, and generally does not mix with groundwater that is of meteoric origin. This type of water is cooled by heat conduction. The concentration of Cl in this type of thermal water is very similar to that in seawater. The δD and δ18O values are approximately constant and independent of temperature. The original Na-Cl-type geopressured thermal water is distributed mainly along anticlinal axes in folded Neogene formations. The mixed Na-Cl-type geothermal water is related to the expulsion activity of the geopressured hydrothermal system and occurs mostly along active faults. It is formed by shallow groundwater of meteoric origin being mixed with geopressured hydrothermal water when the geopressured hydrothermal system was expulsed along active faults by paroxysmal tectonic events.  相似文献   

4.
Huilong Xu  Yasue Oki 《Island Arc》2004,13(2):333-345
Abstract   The Shinanogawa Seismic Belt in the Northern Fossa Magna, Honshu Island, Japan, extends along the Shinano River, bounding the Eurasian Plate and the Okhotsk Plate. The geopressured hydrothermal system occurs widely in the Northern Fossa Magna region. Many destructive earthquakes are related to the activity of this system in the Shinanogawa Seismic Belt. Expulsion of a geopressured hydrothermal system and rising from depth along an active fault triggers the occurrence of an earthquake and opens the fault as a pathway. Anomalous areas in temperature, electrical conductivity and Cl concentration of groundwater trend north–east in a linear distribution, and convincingly demonstrate the presence of a buried active fault at the epicentral area of the destructive earthquake in the Shinanogawa Seismic Belt. The distribution of the major axis of the anomalous area in groundwater temperature shows a strong positive relationship with earthquake magnitude, which means that the distribution of this area may indicate the scale of earthquake fault. The linearly anomalous areas in groundwater temperature, resulting from the percolation of a geopressured hydrothermal system, that have no record of previous destructive earthquake are predicted to be areas where destructive earthquakes could occur in the future. Four potential earthquake areas are proposed and discussed in this paper, based on re-examination of active faults and seismicity in the Shinanogawa Seismic Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号