首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Chae (2001) first proposed a method of self-consistently determining the rate of change of magnetic helicity using a time series of longitudinal magnetograms only, such as taken by SOHO/MDI. Assuming that magnetic fields in the photosphere are predominantly vertical, he determined the horizontal component of velocity by tracking the displacements of magnetic flux fragments using the technique of local correlation tracking (LCT). In the present paper, after briefly reviewing the recent advance in helicity rate measurement, we argue that the LCT method can be more generally applied even to regions of inclined magnetic fields. We also present some results obtained by applying the LCT method to the active region NOAA 10365 under emergence during the observable period, which are summarized as follows. (1) Strong shearing flows were found near the polarity inversion line that were very effective in helicity injection. (2) Both the magnetic flux and helicity of the active region steadily increased during the observing period, and reached 1.2 × 1022 Mx and 8 ×1042 Mx2, respectively, 4.5 days after the birth of the active region. (3) The corresponding ratio of the helicity to the square of the magnetic flux, 0.05, is roughly compatible with the values determined by other studies using linear-force-free modeling. (4) A series of flares took place while the rate of helicity injection was high. (5) The choice of a smaller window size or a shorter time interval in the LCT method resulted in a bigger value of the LCT velocity and a bigger value of the temporal fluctuation of the helicity rate. (6) Nevertheless when averaged over a time period of about one hour or longer, the average rate of helicity became about the same within about 10%, almost irrespective of the chosen window size and time interval, indicating that short-lived, fluctuating flows may be insignificant in transferring magnetic helicity. Our results suggest that the LCT method may be applied to 96-minute cadence full-disk MDI magnetograms or other data of similar kind, to provide a practically useful, if not perfect, way of monitoring the magnetic helicity content of active regions as a function of time.  相似文献   

2.
The investigation of the dynamics of magnetic fields from small scales to the large scales is very important for the understanding of the nature of solar activity. It is also the base for producing adequate models of the solar cycle with the purpose to predict the level of solar activity. Since December 1995 the Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO) provides full disk magnetograms and synoptic maps which cover the period of solar cycle 23 and the current minimum. In this paper, I review the following important topics with a focus on the dynamics of the solar magnetic field. The synoptic structure of the solar cycle; the birth of the solar cycle (overlapping cycles 23 and 24); the relationship of the photospheric magnetic activity and the EUV solar corona, polar magnetic fields and dynamo theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present the results of a photometric study of X-ray-active weak-lined T Tauri (WTT) stars in the η Chamaeleontis star cluster. Multi-epoch V -band photometric monitoring during 1999 and 2000 of the 10 X-ray-active WTT stars found that all were variable in one or both years, with periods ascribed to rotational modulation of starspots. Comparison between the rotational and X-ray properties of these objects indicates the saturation level,     observed in other studies of X-ray-active pre-main-sequence stars, persists in the η Cha stars from the slow- to the fast-rotator regimes. Cousins VRI photometry of the WTT stars has enabled us to investigate further the photometric properties of these stars. The stars appear sufficiently coeval to distinguish near-equal-mass binaries within the sample. A new Hertzsprung–Russell diagram for these objects suggests ages of 4–9 Myr for M-type RECX primaries using the tracks of D'Antona & Mazzitelli.  相似文献   

4.
The magnetic field of the umbrae is sometimes found to be saturated in the magnetograms taken by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO).It is suggested that the combination of the low intensity of sunspot umbrae and the limitation of the 15-bit onboard numerical data acquisition leads to this saturation.In this paper,we propose to use the MDI's intensity data to correct this saturation.This method is based on the well-established relationship between the continuum intensity and the magnetic field (the so-called I-B relationship).A comparison between the corrected magnetic field and the data taken by the Stokes-Polarimeter of the Solar Optical Telescope (SOT/SP) onboard Hinode shows a reasonable agreement,suggesting that this correction is effective.  相似文献   

5.
The problem of (dc) magnetic field energy build up in the solar atmosphere is addressed. Although large-scale current generation may be due to large-scale shearing motions in the photosphere, recently a new approach was proposed: under the assumption that the magnetic field evolves through a sequence of force-free states, Seehafer (1994) found that the energy of small-scale fluctuations may be transferred into energy of large-scale currents in an AR (the α-effect). The necessary condition for the α-effect is revealed by the presence of a predominant sign of current helicity over the volume under consideration. We studied how frequently such a condition may occur in ARs. On the basis of vector magnetic field measurements we calculated the current helicity B z · (▽ × B) z in the photosphere over the whole AR area for 40 active regions and obtained the following results:
  1. In 90% of cases there existed significant excess current helicity of some sign over the active region area. So one can suggest that the build up of large-scale currents in an active region due to small-scale fluctuations may be typical in ARs.
  2. In 82.5% of cases, the excess current helicity in the northern (southern) hemisphere was negative (positive).
The method proposed can be applied to those ARs where the determination of the predominant sign of current helicity by traditional visual inspection of Hα-patterns is not reliable.  相似文献   

6.
SOHO/MDI magnetograms have been used to analyze the longitude distribution of the squared solar magnetic field 〈B 2〉 in the activity cycle no. 23. The energy of the magnetic field (〈B 2〉) is shown to change with longitude. However, these variations hardly fit the concept of active longitudes. In the epochs of high solar activity, one can readily see a relationship between longitude variations of the medium-strong ((|B| > 50 G or |B| > 100 G) and relatively weak (|B| ≤ 50 G or |B| ≤ 100 G) fields at all latitudes. In other periods, this relationship is revealed mainly at the latitudes not higher than 30°. The background fields (|B| ≤ 25 G) also display longitude variations, which are, however, not related to those of the strong fields. This makes us think that the fields of solar activity are rather inclusions to the general field than the source of the latter.  相似文献   

7.
A note on the evolution of magnetic helicity in active regions   总被引:1,自引:0,他引:1  
Wang Jingxiu 《Solar physics》1996,163(2):319-325
The evolution of magnetic helicity in a rapidly growing active region is governed mainly by the advection of magnetic fields into the photosphere. Dissipation at the photosphere makes only a minor contribution to helicity evolution. Current helicity dissipation in the three-dimensional domain around the active region can be ignored.  相似文献   

8.
Liu  Yang  Xuepu Zhao  Hoeksema  J. Todd 《Solar physics》2004,219(1):39-53
Shutter noise induces a small random shift of the zero point in full-disk magnetograms obtained by the Michelson Doppler Imager (MDI) instrument aboard SOHO. In this paper, we develop a method to remove this offset by fitting the distribution of the magnetic field strength with a Gaussian function (Ulrich et al., 2002). We also discover a systematic error in the five-minute magnetograms that are the sum of five individual magnetograms computed on-board; this error can be removed together with the offset. The mean solar magnetic field and synoptic frames derived from corrected magnetograms show significant improvement. Standard synoptic charts benefit from reduced noise and elimination of systematic errors in the individual magnetograms. This indicates that this correction is effective and necessary.  相似文献   

9.
10.
We present meridional flow measurements of the Sun using a novel helioseismic approach for analyzing SOHO/MDI data in order to push the current limits in radial depth. Analyzing three consecutive months of data during solar minimum, we find that the meridional flow is as expected poleward in the upper convection zone, turns equatorward at a depth of around 40 Mm (∼ 0.95 R), and possibly changes direction again in the lower convection zone. This may indicate two meridional circulation cells in each hemisphere, one beneath the other. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Ma  Zhenguo 《Solar physics》2002,211(1-2):189-198
The evolution dH R/dt of relative helicity H R provides a gauge-invariant measure of the helicity flow across the open surface S o of an active region. With the incompressible approximation, reformulation of the evolution reveals that it is determined not only by the widely used cross-helicity h mvp=A pv contributed by the vector potential A p of a reference potential field B p, where v is the fluid velocity, but by another cross-helicity h mvo=A ov contributed by the vector potential A o of the open field B o in the region as well. Only under two conditions, (1) A p=A (A is the transverse component of A o), (2) v z=0 (v z is the longitudinal component of v) or A z=0 (A z is the longitudinal component of A o), can h mvo be merged into h mvp to give the pioneering dH R/dt equation shown in Equation (4) of Berger (1984). Results show that h mvo originates from vh o (h o=A oB o is the helicity density of the open field) and should also be considered in dealing with the development of relative helicity in active regions. Finally, the equation to calculate dH R/dt in active regions is synthesized and presented.  相似文献   

12.
We processed magnetograms that were obtained with the Michaelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI). The results confirm the basic properties of long-period oscillations of sunspots that have previously been established and also reveal new properties. We show that the limiting (lowest) eigenmode of low-frequency oscillations of a sunspot as a whole is the mode with a period of 10?–?12 up to 32?–?35 hours (depending on the sunspot’s magnetic-field strength). This mode is observed consistently throughout an observation period of 5?–?7 days, but its amplitude is subject to quasi-cyclic changes, which are separated by about 1.5?–?2 days. As a result, the lower mode with a period of about 35?–?48 hours appears in the power spectrum of sunspot oscillations. But this lowest mode is apparently not an eigenmode of a sunspot because its period does not depend on the magnetic field of the sunspot. Perhaps the mode reflects the quasi-periodic sunspot perturbations caused by supergranulation cells that surround it. We also analyzed SOHO/MDI artifacts, which may affect the low-frequency power spectra of sunspots.  相似文献   

13.
《Chinese Astronomy》1979,3(2):205-208
This paper describes our daily photography of maps of the strong magnetic fields in solar active regions. In one case, the isogauss line at 2000 G in a complex magnetic region is seen to coincide with the optical outline of a sunspot umbra.  相似文献   

14.
Observational data on the Ni I 6768 Å line profile variations during the impulsive and post-impulsive phases of the July 18, 2002 while light flare (WLF) in the kernel of WLF emission and in other flare kernels are presented. The line profiles at the sites of intense photospheric motions in active regions are also studied. The effect of the observed Ni I 6768 Å line profile variations on the SOHO/MDI magnetic field measurements is estimated. The following conclusions have been reached. (1) The thermodynamic structure of the photo-spheric layers changes significantly during the flare. As a result, the Ni I line profile changes, particularly at the site of WLF emission. At this time, the line depth decreases significantly, but the line does not show any emission reversal. Subsequently, a relatively slow return to the conditions of an undisturbed photosphere is observed. (2) The technique of SOHO/MDI magnetic field measurements is insensitive to such line variations. Therefore, the detected variations during the flare did not result in any noticeable errors in the MDI longitudinal magnetic field measurements. (3) The line profile is broadened, shifted as a whole, and asymmetric at the sites of active regions where intense photospheric motions appear. In the MDI measurements, such changes in the profile lead to an underestimation of the magnetic field by approximately 10% if the line-of-sight velocity of the photo-spheric ejection is about 1.6 km s?1.  相似文献   

15.
This paper is concerned with the Laplace boundary-value problem with the directional derivative, corresponding to the specific nature of measurements of the longitudinal component of the photospheric magnetic field. The boundary conditions are specified by a distribution on the sphere of the projection of the magnetic field vector into a given direction, i.e., they exactly correspond to the data of daily magnetograms distributed across the full solar disk. It is shown that the solution of this problem exists in the form of a spherical harmonic expansion, and uniqueness of this solution is proved. A conceptual sketch of numerical determination of the harmonic series coefficients is given. The field of application of the method is analyzed with regard to the peculiarities of actual data. Results derived from calculating magnetic fields from real magnetograms are presented. Finally, we present differences in results derived from extrapolating the magnetic field from a synoptic map and a full-disk magnetogram.  相似文献   

16.
Ermakova  L.V. 《Solar physics》2000,191(1):161-169
In this paper the magnetic flux distribution of bipolar active regions at the sunspot development stage is analyzed. It is shown that the ratio of the total sunspot area in an active region to the maximum one can be used as a characteristic of the development phase. Such a procedure allows combining the data attributed to different active regions for studying evolutionary changes. The expressions describing the evolution of magnetic flux distribution of bipolar active region were obtained and their interpretation with rise and descent of loop like magnetic flux tube leading to active region formation was justified.  相似文献   

17.
The Tucker's proposal of heating of active regions by magnetic energy dissipation has been found to be unsatisfactory in its present form because it predicts unacceptably high values of the twisting velocity for the magnetic field.  相似文献   

18.
N. Seehafer 《Solar physics》1986,105(2):223-235
The field lines of closed magnetic structures above the photosphere define a mapping from the photosphere to itself. This mapping is discontinuous, and the field line connectivity to the boundary can change discontinuously in response to continuous changes of field strength and direction, if field lines either end in a singular point of the field or are tangential to the photosphere at one end. Whereas the general existence of singular points is questionable, the field has typically a cell structure due to the presence of segments of the zero line of the photospheric longitudinal field on which the transversal field is directed from negative (pointing into the Sun) to positive fields. The cell boundaries are made up of field lines which all touch the photosphere on one of these line segments. Within each of the cells the field line mapping is continuous. When during a slow evolution a substantial part of a coronal loop or of an arcade has passed from one cell into another a fast dynamic instability may set in which was previously prevented by the anchoring of field lines in the dense photosphere.  相似文献   

19.
Based on observational data obtained with the RT-22 Crimean Astrophysical Observatory radio telescope at frequencies of 8.6 and 15.4 GHz, we investigate the quasi-periodic variations of microwave emission from solar active regions with periods Tp<10 min. As follows from our wavelet analysis, the oscillations with periods of 3–5 min and 10–40 s have the largest amplitudes in the dynamic power spectra, while there are virtually no oscillations with Tp<10 s. Our analysis shows that acoustic modes with Tp?1 min strongly dissipate in the lower solar corona due to thermal conduction losses. The oscillations with Tp=10–40 s are associated with Alfvén disturbances. We analyze the influence of acoustic and Alfvén oscillations on the thermal mechanisms of microwave emission in terms of the homogeneous model. We discuss the probable coronal heating sources.  相似文献   

20.
A type of saturation is sometimes seen in sunspot umbrae in MDI/SOHO magnetograms. In this paper, we present the underlying cause of such saturation. By using a set of MDI circular polarization filtergrams taken during an MDI line profile campaign observation, we derive the MDI magnetograms using two different approaches: the on-board data processing and the ground data processing, respectively. The algorithms for processing the data are the same, but the former is limited by a 15-bit lookup table. Saturation is clearly seen in the magnetogram from the on-board processing simulation, which is comparable to an observed MDI magnetogram taken one and a half hours before the campaign data. We analyze the saturated pixels and examine the on-board numerical calculation method. We conclude that very low intensity in sunspot umbrae leads to a very low depth of the spectral line that becomes problematic when limited to the 15-bit on-board numerical treatment. This 15-bit on-board treatment of the values is the reason for the saturation seen in sunspot umbrae in the MDI magnetogram. Although it is possible for a different type of saturation to occur when the combination of a strong magnetic field and high velocity moves the spectral line out of the effective sampling range, this saturation is not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号