首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

2.
ABSTRACT

Both Pacific and Neo-Tethys plates had major influences on the Cretaceous magmatisms in southeastern China. The subduction of the Neo-Tethys plate is, however, not well studied. This paper reports zircon U–Pb ages, Lu–Hf isotopes, whole-rock geochemistry, and Sr–Nd isotopes for the Qianjia intrusive rocks in Hainan Island, southeast China. LA-inductively coupled plasma mass spectrometry zircon U–Pb dating of granites and dark enclave monzonite in the area yield magmatic crystallization ages of ca. 100 Ma, which are consistent with other Late Cretaceous granites, e.g. Baocheng, Tunchang, and Yaliang. Both rocks show high-K calc-alkaline compositions and metaluminous to weakly peraluminous signatures belonging to I-type rocks. They are enriched in the alkalis, Rb, Th, U, K, and light rare earth elements, depleted in Nb, Ta, Ti, and P, and characterized by high Al2O3 contents (14–15 wt%) and high Mg# values (50–53). Among them, some of granodiorites have geochemical affinities of adakitic rocks. Zircon εHf(t) values range from ?5.97 to ?1.18, with fairly constant whole-rock Sr–Nd isotopes (ISr = 0.7084–0.7086; εNd(t) = ?4.97 to ?4.29) similar with those of the Cretaceous mafic dikes (136–81 Ma) in Hainan Island, which are the result of partial melting of subduction-related sub-continental lithospheric mantle. Combined with Sr–Nd isotopes and negative Hf isotope, Qianjia intrusive rocks were likely derived from hybrid melts of underplated continental crust-derived with mantle-derived, then experienced varied degrees of fractional crystallization. According to the latest geophysical, sedimentological, and geochemical data, previous authors identified a Cretaceous E–W-trend subduction zone in the northern margin of the South China Sea. Combined with the southern margin magmatisms (110–80 Ma) and magmatisms of ~120 Ma distributed east–west ward from the Philippines to the Vietnam, We preferred that the subduction of the E–W-trend Neo-Tethys plate was the main geodynamic mechanism which induced the Cretaceous large-scale magmatisms in the southern margin of South China Block.  相似文献   

3.
This article reports new zircon laser ablation-multicollector-inductively coupled plasma-mass spectrometry U–Pb and Hf isotope, whole-rock major and trace element, and Sr–Nd isotope data for mineralized and barren intrusions associated with the Duolong porphyry–epithermal copper–(gold) deposit (DPCD, a mining camp containing several individual deposits) in the western Qiangtang Terrane (QT), central Tibet. These data are used to further our understanding of the geological evolution of this region. The mineralized and barren DPCD intrusions are typical I-type granitoids that were synchronously emplaced at ca. 112.6–125.9 Ma. These igneous rocks show arc affinities that are characterized by enrichments in the light rare earth elements (LaN/YbN = 4.08–15.23) and the light ion lithophile elements (Rb, Th, U, K, and Pb), and depletions in the high field strength elements (Nb, Ta, and Ti). They have 87Sr/86Sr(i) values of 0.7046–0.7079, Nd(t) values of –6.0 to +1.1, and two-stage Nd model ages of ca. 823–1410 Ma. Zircons from these intrusive rocks have variable but generally positive εHf(t) values (–2.7 to +13.7) and relatively young zircon Hf crustal model ages of 335–1351 Ma. Combining these data with geochemical data reported in recent studies, we infer that the mineralized and barren DPCD intrusions formed in a continental marginal arc setting and likely originated from a common parental magma that was result of magma mixing of juvenile crust-derived basaltic melts and old lower crust-derived melts. The formation of the DPCD intrusions indicates that the Bangongco–Nujiang oceanic lithosphere was still undergoing northward subduction beneath the western QT at ca. 112.6–125.9 Ma, suggesting in turn that the oceanic basin have not closed completely during the Early Cretaceous. These new data also indicate that the processes that occur during the subduction of oceanic crust in continental marginal arc settings produce and preserve juvenile crustal material, leading to net continental crust vertical growth and thickening.  相似文献   

4.
Zircon dating, geochemical and Nd-Sr isotopic analyses have been determined for samples from two granitic intrusions in the Talate mining district, Chinese Altay. Our data suggest that these intrusions were emplaced from 462.5 Ma to 457.8 Ma. These rocks have strong affinity to peralumious S-type granite and are characterized by prominent negative Eu anomalies(δEu=0.20–0.35), strong depletion in Ba, Sr, P, Ti, Nb, Ta and positive anomalies in Rb, Th, U, K, La, Nd, Zr, Hf. Nd-Sr isotopic compositions of the whole rock show negative εNd(t) values(-1.21 to-0.08) and Mesoproterozoic Nd model ages(T2 DM=1.20–1.30 Ga). Their precursor magmas were likely derived from the partial dehydration melting of Mesoproterozoic mica-rich pelitic sources and mixed with minor mantle-derived components, under relatively low P(≤1 kbar) and high T(746–796°C) conditions. A ridge subduction model may account for the early Paleozoic geodynamic process with mantle-derived magmas caused by Ordovician ridge subduction and the opening of a slab window underplated and/or intraplated in the middle–upper crust, which triggered extensive partial melting of the shallow crust to generate diverse igneous rocks, and provided the heat for the crustal melting and juvenile materials for crustal growth.  相似文献   

5.
The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and Lu-Hf isotopes, whole-rock major and trace elements, and Sr–Nd isotopes of two Ordovician granitoid plutons(466–455 Ma) and their Silurian mafic dikes(~436 Ma) in the western Kunlun orogen. These granitoids show peraluminous high-K calcalkaline characteristics, with(87Sr/86Sr)_i value of 0.7129–0.7224, εNd(t) values of -9.3 to -7.0 and zircon εHf(t) values of -17.3 to -0.2, indicating that they were formed by partial melting of ancient lower-crust(metaigneous rocks mixed with metasedimentary rocks) with some mantle materials in response to subduction of the Proto-Tethyan Ocean and following collision. The Silurian mafic dikes were considered to have been derived from a low degree of partial melting of primary mafic magma. These mafic dikes show initial 87Sr/86Sr ratios of 0.7101–0.7152 and εNd(t) values of -3.8 to -3.4 and zircon εHf(t) values of -8.8 to -4.9, indicating that they were derived from enriched mantle in response to post-collisional slab break-off. Combined with regional geology, our new data provide valuable insight into late evolution of the Proto-Tethys.  相似文献   

6.
《International Geology Review》2012,54(12):1492-1509
ABSTRACT

The Biarjmand granitoids and granitic gneisses in northeast Iran are part of the Torud–Biarjmand metamorphic complex, where previous zircon U–Pb geochronology show ages of ca. 554–530 Ma for orthogneissic rocks. Our new U–Pb zircon ages confirm a Cadomian age and show that the granitic gneiss is ~30 million years older (561.3 ± 4.7 Ma) than intruding granitoids (522.3 ± 4.2 Ma; 537.7 ± 4.7 Ma). Cadomian magmatism in Iran was part of an approximately 100-million-year-long episode of subduction-related arc and back-arc magmatism, which dominated the whole northern Gondwana margin, from Iberia to Turkey and Iran. Major REE and trace element data show that these granitoids have calc-alkaline signatures. Their zircon O (δ18O = 6.2–8.9‰) and Hf (–7.9 to +5.5; one point with εHf ~ –17.4) as well as bulk rock Nd isotopes (εNd(t) = –3 to –6.2) show that these magmas were generated via mixing of juvenile magmas with an older crust and/or melting of middle continental crust. Whole-rock Nd and zircon Hf model ages (1.3–1.6 Ga) suggest that this older continental crust was likely to have been Mesoproterozoic or even older. Our results, including variable zircon εHf(t) values, inheritance of old zircons and lack of evidence for juvenile Cadomian igneous rocks anywhere in Iran, suggest that the geotectonic setting during late Ediacaran and early Cambrian time was a continental magmatic arc rather than back-arc for the evolution of northeast Iran Cadomian igneous rocks.  相似文献   

7.
The Wunugetushan porphyry Cu–Mo deposit is located in northeastern China. The deposit lies within the Mongolia–Erguna metallogenic belt, which is associated with the evolution of the Mongol–Okhotsk Ocean. The multiple episodes of magmatism in the ore district, occurred from 206 to 173 Ma, can be divided into pre-mineralization stage (biotite granite), mineralization stage (monzogranitic porphyry and rhyolitic porphyry), and post-mineralization stage (andesitic porphyry). The biotite granite has (87Sr/86Sr)i values of 0.704105–0.704706, εNd(t) values of ?0.67 to ?0.07, and εHf(t) values of ?0.4 to 2.8, yielding Hf two-stage model ages (TDM2) 1250–1067 Ma, and Nd model ages of 1.04–0.96 Ga, indicating that the pre-mineralization magmas were generated by the remelting of Neoproterozoic juvenile crustal material. The monzogranitic porphyry has (87Sr/86Sr)i values of 0.704707–0.706134, εNd(t) values of 0.29–1.33, and εHf(t) values of 1.0–2.9, yielding TDM2 model ages of 1173–1047 Ma. The rhyolitic porphyry has (87Sr/86Sr)i ratio of 0.702129, εNd(t) value of ?0.21, and εHf(t) values of ?0.5 to 7.1, TDM2 model ages from 1269 to 782 Ma. These results show that the magmas of mineralization stage were generated by the partial melting of juvenile crust mixed with mantle-derived components. The andesitic porphyry has (87Sr/86Sr)i ratio of 0.705284, εNd(t) value of 0.82, and εHf(t) values from 4.1 to 7.4, indicating that the post-mineralization magma source contained more mantle-derived material. The Mesozoic Cu–Mo deposits which genetically related to Mongol–Okhotsk Ocean were temporally distributed in Middle to Late Triassic (240–230 Ma), Early Jurassic (200–180 Ma), and Later Jurassic (160–150 Ma) period. The Middle Triassic to Early Jurassic Cu–Mo mineralization was dominated by Mongol–Okhotsk oceanic plate southeast-directed subducted beneath the Erguna massif. The Later Jurassic Cu–Mo mineralization was controlled by the continent–continent collision between Siberia plate and Erguna massif.  相似文献   

8.
The origin of microgranitoid enclaves in granitic plutons has long been debated (hybrid magma blobs vs. refractory restites or cognate fragments). This article presents detailed petrography, SHRIMP zircon U–Pb chronology, bulk-rock major and trace element analyses, and Sr–Nd isotope and in situ zircon Hf isotopic geochemistry for microgranitoid enclaves within two Late Triassic granitic plutons in the Qinling orogen. Zircon U–Pb dating shows that the enclaves formed during the Carnian (222.5 ± 2.1 to 220.7 ± 1.9 Ma) coeval with their host granitoids (220.0 ± 2.0 to 218.7 ± 2.4 Ma). Field and petrological observations (e.g. double enclaves, xenocrysts, acicular apatite, and poikilitic K-feldspar or quartz) suggest that the enclaves are globules of a mantle-derived more mafic magma that was injected into and mingled with the host magma. The enclaves are mainly ultrapotassic, distinct from the host granitoids that have high-K calc-alkaline bulk-rock compositions. Although the enclaves have closely similar bulk-rock Sr–Nd isotope [initial 87Sr/86Sr?=?0.7046–0.7056, ?Nd (T)?=?–0.3 to –5.0] and in situ zircon Hf isotope [?Hf (T)?=?–1.5 to?+2.9] ratios as the granitoids [initial 87Sr/86Sr?=?0.7042–0.7059, ?Nd (T)?=?–0.6 to –6.3, ?Hf (T)?=?–2.2 to?+1.6], chemical relationships including very different bulk-rock compositions at a given SiO2 content lead us to interpret the isotopic similarities as reflecting similar but separate isotopic source rocks. Detailed elemental and isotopic data suggest that the enclaves and the host granitoids were emplaced in a continental arc environment coupled with northward subduction of the Palaeo-Tethyan oceanic crust. Partial melting of subducted sediments triggered by dehydration of the underlying igneous oceanic crust, with melts interacting with the overlying mantle wedge, formed high-K calc-alkaline granitic magmas, whereas partial melting of diapiric phlogopite-pyroxenites, solidified products of the same subducting sediment-derived melts, generated ultrapotassic magmas of the microgranitoid enclaves. Our new data further confirm that in the Late Triassic time the Qinling terrane was an active continental margin rather than a post-collisional regime, giving new insights into the tectonic evolution of this orogen.  相似文献   

9.
西藏中部拉萨地块大规模早白垩世花岗岩类的岩浆源区和岩石成因迄今尚未得到很好约束,对这些问题的深入理解将有助于揭示拉萨地块白垩纪时期的岩浆作用过程及成矿背景。本文报道了中部拉萨地块代表性花岗岩基——措勤麦嘎岩基的锆石U-Pb年代学、全岩元素地球化学、Sr-Nd同位素和锆石Hf同位素数据。本文锆石U-Pb定年结果表明,麦嘎岩基花岗质岩主要侵位于122±1Ma和113±2Ma,闪长质包体与后者同期(113±2Ma)。122±1Ma花岗质岩属I型弱过铝质高钾钙碱性系列,(87Sr/86Sr)i值高(0.7147),全岩εNd(t)(-12.0)和锆石εHf(t)(-15.7~-11.1)为较大的负值,表明其很可能来源于古老下地壳物质的重熔。113±2Ma寄主花岗质岩为I型偏铝质-弱过铝质高钾钙碱性系列,相对于122±1Ma花岗质岩石,其(87Sr/86Sr)i比值偏低(0.7094~0.7156)、全岩εNd(t)值(-12.1~-7.3)和锆石εHf(t)值(-11.1~0.1)较高,很可能来源于古老下地壳物质的部分熔融,并含有更多幔源物质。闪长质包体(113±2Ma)为偏铝质中-高钾钙碱性系列,以变化范围大的(87Sr/86Sr)i(0.7058~0.7105)、负的全岩εNd(t)值(-10.7~-9.8)及负的锆石εHf(t)值(-14.0~-5.6)为特征,可能是古老富集岩石圈地幔物质部分熔融的产物或亏损地幔物质经历强烈地壳混染作用的结果。在目前已有资料条件下(缺乏同期基性岩石的相关数据),本文暂将麦嘎岩基113±2Ma寄主花岗质岩及同期闪长质包体解释为镁铁质岩浆与长英质岩浆发生不同程度岩浆混合作用的产物,这一解释可能对中部拉萨地块同期花岗类的岩石成因具普遍意义。麦嘎岩基及中部拉萨地块同期岩浆岩约113Ma幔源物质增加现象,可能是南向俯冲的班公湖-怒江洋壳岩石圈板片断离的结果。  相似文献   

10.
《International Geology Review》2012,54(13):1668-1690
The western Junggar Basin is located on the southeastern margin of the West Junggar terrane, Northwest China. Its sedimentary fill, magma petrogenesis, tectonic setting, and formation ages are important for understanding the Carboniferous tectonic evolution and continental growth of the Junggar terrane and the Central Asian Orogenic Belt. This paper documents a set of new zircon secondary ion mass spectrometry U–Pb geochronological and Hf isotopic data and whole-rock elemental and Sr–Nd isotopic analytical results for the Carboniferous strata and associated intrusions obtained from boreholes in the western Junggar Basin. The Carboniferous strata comprise basaltic andesite, andesite, and dacite with minor pyroclastic rocks, intruded by granitic intrusions with zircon secondary ion mass spectrometry U–Pb ages of 327–324 Ma. The volcanic rocks are calc-alkaline and show low high εNd(t) values (5.3–5.6) and initial 87Sr/86Sr (0.703561–0.703931), strong enrichment in LREEs, and some LILEs and depletion in Nb, Ta, and Ti. Furthermore, they also display high (La/Sm)N (1.36–1.63), Zr/Nb, and La/Yb, variable Ba/La and Ba/Th and constant Th/Yb ratios. These geochemical data, together with low Sm/Yb (1.18–1.38) and La/Sm (2.11–2.53) ratios, suggest that these volcanic rocks were derived from a 5–8% partial melting of a mainly spinel Iherzolite-depleted mantle metasomatized by slab-derived fluids and melts of some sediments in an island-arc setting. In contrast, the granitic intrusions represent typical adakite geochemical features of high Sr and low Y and Yb contents, with no significant Eu anomalies, high Mg#, and depleted εNd(t) (5.6–6.4) and εHf(t) (13.7–16.2) isotopic compositions, suggesting their derivation from partial melting of hot subducted oceanic crust. In combination with the previous work, the West Junggar terrane and adjacent western Junggar Basin are interpreted as a Mariana-type arc system driven by northwestward subduction of the Junggar Ocean, possibly with a tectonic transition from normal to ridge subduction commencing ca. at 331–327 Ma.  相似文献   

11.
Abstract

Palaeozoic granitoids in the Chinese Altai are important for understanding the evolution of the Central Asian Orogenic Belt (CAOB). The Xiaodonggou granitic intrusion, situated in the Chinese Altai (southern CAOB), is composed of two intrusive phases, medium-grained granite intruded by porphyritic granite. Zircon LA-ICP-MS U–Pb analyses of medium-grained granite and porphyritic granite yield ages of 409 ± 2 Ma and 400 ± 1 Ma, respectively, indicating that these formed in Early Devonian time. Medium-grained granite and porphyritic granite have similar geochemical features and Nd–Hf isotopic compositions. Arc-like geochemical characteristics (e.g. enrichment of LILEs and negative anomalies of Nb, Ta, Ti, and P) show that both phases are volcanic arc granites (VAGs). Geochemical and isotopic characteristics suggest that these magmas originated from melting older crust. Based on their near-zero or negative εNd(t) values (?1.4to 0) and positive εHf(t) values (+1.4 to +7.8), together with Nd model ages of 1.15–1.26 Ga and zircon Hf model ages of 0.90–1.30 Ga, we suggest that the Xiaodonggou granites were derived from a mixture of juvenile and old crustal components. Some other Devonian granitic intrusions were recently identi?ed in the Chinese Altai with ages between 416 and 375 Ma. These Devonian granites have similar geochemical characteristics and petrogenesis as Xiaodonggou granites. The formation of these Devonian granites was in response to subduction processes, suggesting that Chinese Altai was an active continental margin in Early Devonian time.  相似文献   

12.
Zircon U–Pb ages, major and trace elements, and Sr, Nd and Hf isotope compositions of the Changboshan‐Xieniqishan (CX) intrusion from the Great Xing'an Range (GXAR), northeastern China, were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) zircon U–Pb dating yields an emplacement age of 161 ± 2 Ma for the CX intrusion. Bulk‐rock analyses show that this intrusion is characterized by high SiO2, Na2O and K2O, but low MgO, CaO and P2O5. They are enriched in large‐ion lithophile elements and light rare earth elements, with marked Eu anomalies (mostly from 0.36 to 0.65), and depleted in heavy rare earth elements and high field strength elements. Most samples have relatively low (87Sr/86Sr)i values (0.70423–0.70457), with εNd(t) fluctuating between −0.4 and 2.3. The εHf(t) for zircons varies from 5.4 to 8.7. Sr–Nd isotope modelling results, in combination with young Nd and Hf model ages (760–986 and 549–728 Ma, respectively) and the presence of relict zircons, indicate that the CX intrusion may originate from the partial melting of juvenile crust, with minor contamination of recycled crustal components, and then underwent extensive fractional crystallization of K‐feldspar, plagioclase, biotite, sphene, apatite, zircon and allanite. Considering the widespread presence of granitoids with coeval volcanic rocks, we contend that the CX intrusion formed in an extensional environment related to the upwelling of asthenospheric mantle induced by the subduction of the Palaeo‐Pacific plate, rather than a lithospheric delamination model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
《International Geology Review》2012,54(13):1630-1657
New geological, geochronological, and geochemical results on volcanic rocks and cobbles from early Mesozoic sedimentary rocks identify two contrasting latest Permian–Triassic volcanic rock suites in the northern North China Craton (NCC). The early rock suite erupted during the latest Permian–Early Triassic at ca. 255–245 Ma and was probably widely distributed in the northern NCC prior to the Early Jurassic. It comprises rhyolitic welded tuff, rhyolite, and tuffaceous sandstone and is characterized by high contents of SiO2 and K2O, moderate initial 87Sr/86Sr, low negative εNd(t) and εHf(t) values, and old Nd-Hf isotopic model ages. It was likely produced by fractional crystallization of lower crustal-derived magmas due to underplating by lithospheric mantle-derived magmas near the crust–mantle boundary in syncollisional to post-collisional/post-orogenic tectonic settings. The late rock suite, erupted during the Middle–Late Triassic at ca. 238–228 Ma, displays adakitic geochemical signatures and consists of intermediate volcanic rocks such as andesite, trachyandesite, and autoclastic trachyandesite breccia, with minor felsic rocks. This suite is characterized by high Al2O3, MgO, Sr, Ba, Cr, V, and Ni concentrations; high Mg# values; low Y and Yb concentrations and high Sr/Y ratios; low initial 87Sr/86Sr; high negative εNd(t) and εHf(t) values; and young Nd-Hf isotopic model ages. The younger suite was generated by mixing of magmas derived from melting of upwelling asthenosphere, with melts of ancient lower crust induced by underplating of basaltic magmas in an intraplate extensional setting. Strong upwelling of asthenospheric mantle and significant involvement of the asthenospheric mantle materials indicate that the lithospheric mantle beneath the northern NCC was partially delaminated during Middle–Late Triassic time, representing the initial destruction and lithospheric thinning of the northern NCC. Lithospheric thinning and delamination are likely the most important reasons for the Triassic tectonic transition and change of magmatism and deformation patterns in the northern NCC.  相似文献   

14.
The subduction factories in convergent plate margins exert crucial control on recycling terrestrial components and returning to the overlying crust. The Nd and Hf isotopic systems provide potential tracers to evaluate these processes. Here we present a case where these isotopic systems are decoupled in a suite of granites from the Chinese Altai, showing a wide range of εHf(t) values(from -4.7 to +10.8) in contrast to a limited range of εNd(t) values(from -5.8 to -1.9). The zircon xenocrysts occurring frequently in these rocks show markedly negative εHf(t) values(from -34.3 to -6.5) and positive d7 Li values(from +12.5 to +18.2). We propose a model to explain the observed relationship between residual zircon and Nde Hf isotope decoupling. We suggest that the Altai granites originated from partial melting of subducted slab components under relatively low temperature conditions which aided the residual zircon from oceanic sediments to inherit and retain a significant amount of177 Hf in the source, thereby elevating the176 Hf/177 Hf ratio of the melt, and decoupling from the143 Nd/144 Nd ratio during the subsequent magmatic processes. Our study illustrates a case where sediment recycling in subduction zone contributes to decoupling of Nd and Hf isotopic systems, with former providing a more reliable estimate of the source characteristics of granitic magmas.  相似文献   

15.
The western Kunlun orogen occupies a key position along the tectonic junction between the Pan-Asian and Tethyan domains, reflecting Proto- and Palaeo-Tethys subduction and terrane collision during early Palaeozoic to early Mesozoic time. We present the first detailed zircon U–Pb chronology, major and trace element, and Sr–Nd–O–Hf isotope geochemistry of the Qiukesu pluton and its microgranular enclaves from this multiple orogenic belt. SHRIMP zircon U–Pb dating shows that the Qiukesu pluton was emplaced in the early Silurian (ca. 435 Ma). It consists of weakly peraluminous high-K calc-alkaline monzogranite and syenogranite, with initial 87Sr/86Sr ratios of 0.7131–0.7229, ?Nd(T) of –4.1 to –5.7, δ18O of 8.0–10.8‰, and ?Hf(T) (in situ zircon) of –4.9. Elemental and isotopic data suggest that the granites formed by partial melting of lower-crustal granulitized metasedimentary-igneous Precambrian basement triggered by underplating of coeval mantle-derived enclave-forming intermediate magmas. Fractional crystallization of these purely crustal melts may explain the more felsic end-member granitic rocks, whereas such crustal melts plus additional input from coeval enclave-forming intermediate magma could account for the less felsic granites. The enclaves are intermediate (SiO2 57.6–62.2 wt.%) with high K2O (1.8–3.6 wt.%). They have initial 87Sr/86Sr ratios of 0.7132–0.7226, ?Nd(T) of –5.0 to –6.0, δ18O of 6.9–9.9‰, and ?Hf(T) (in situ zircon) of –8.1. We interpret the enclave magmas as having been derived by partial melting of subduction-modified mantle in the P–T transition zone between the spinel and spinel-garnet stability fields. Our new data suggest that subduction of the Proto-Tethyan oceanic crust was continuous to the early Silurian (ca. 435 Ma); the final closure of the Proto-Tethys occurred in the middle Silurian.  相似文献   

16.
We constrain the origin and tectonic setting of the giant Duolong porphyry–epithermal Cu–Au deposit in the South Qiangtang Terrane of northern Tibet, based on new zircon U–Pb ages and Hf isotopic data, as well as whole-rock major and trace element data from poorly studied ore-associated intrusions in the Duolong area. The LA–ICP–MS zircon U–Pb dating indicates that the ore-associated rocks formed between 121 and 126 Ma. These ore-associated rocks are geochemically similar to low-K tholeiitic M-type granitoids and to mid- to high-K, calc-alkaline I-type granitoids. They have variable and predominantly positive zircon εHf(t) values (− 1.4 to + 15.6) and variable crustal model ages (TCDM(Hf); 176–1122 Ma). Taking into account previous data and the regional geology of the study area, we propose that the ore-associated rocks originated from fractional crystallization of mantle-derived mafic melts and magma mixing of mantle-derived mafic and hybrid lower crust-derived felsic melts, and the hybrid lower crust included a mix of juvenile and older continental material. The Duolong porphyry–epithermal Cu–Au deposit formed within an ‘ensialic forearc’ of an active continental margin as a result of the northwards subduction of the Bangong–Nujiang Ocean crust beneath the South Qiangtang Terrane.  相似文献   

17.
18.
The Gaoligong belt is located in the southeastern margin of the Tibetan plateau, and is bound by the Tengchong and Baoshan blocks. This paper presents new data from zircon geochronology, geochemistry, and whole-rock Sr–Nd–Pb–Hf isotopes to evaluate the tectonic evolution of the Gaoligong belt. The major rock types analysed in the present study are granitic gneiss, granodiorite, and granite. They are metaluminous to peraluminous and belong to high-K, calc-alkaline series. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses of zircons from nine granitic rocks yielded crystallization ages of 495–487 Ma, 121 Ma, 89 Ma, and 70–63 Ma. The granitoids can be subdivided into the following four groups. (1) Early Paleozoic granitic gneisses with high εNd(t) and εHf(t) values of − 1.06 to − 3.45 and − 1.16 to 2.09, and model ages of 1.16 Ga to 1.33 Ga and 1.47 Ga to 1.63 Ga, respectively. Their variable 87Sr/86Sr and Pb values resemble the characteristics of the Early Paleozoic Pinghe granite in the Baoshan block. Our data suggest that the rocks were derived from the break-off of the Proto-Tethyan oceanic slab between the outboard continent and the Baoshan block, which induced the partial melting of Mesoproterozoic pelitic sources mixed with depleted mantle materials. (2) Early Cretaceous granodiorites with low εNd(t) and εHf(t) values of − 8.92 and − 4.91 with Nd and Hf model ages of 1.41 Ga and 1.49 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.711992) and lower crustal Pb values, suggesting that they were derived from Mesoproterozoic amphibolites with tholeiitic signature, leaving behind granulite residue at the lower crust. (3) Early Late Cretaceous granites with low εNd(t) and εHf(t) values of − 9.58 and − 4.61 with Nd and Hf model ages of 1.43 Ga and 1.57 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.713045) and lower crustal Pb isotopic values. These rocks were generated from the partial melting of Mesoproterozoic metapelitic sources resulting from the delamination of thickened lithosphere, following the closure of the Bangong–Nujiang Ocean and collision of the Lhasa–Qiangtang blocks. (4) Late Cretaceous to Paleogene granitic gneisses with low εNd(t) and εHf(t) values of − 4.41 to − 10 and − 5.95 to − 8.71, Nd model ages ranging from 1.08 Ga to 1.43 Ga, and Hf model ages from 1.53 Ga to 1.67 Ga, respectively. These rocks show high initial 87Sr/86Sr (0.713201 and 714662) and lower crustal Pb values. The data suggest that these rocks are likely related to the eastward subduction of the Neo-Tethyan Oceanic slab, which induced partial melting of Mesoproterozoic lower crustal metagreywacke. The results presented in this study from the Gaoligong belt offer important insights on the evolution of the Proto-Tethyan, Bangong–Nujiang, and Neo-Tethyan oceans in the southeastern margin of the Tibetan Plateau.  相似文献   

19.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

20.
In situ zircon U–Pb and Hf-isotopic data have been determined for mafic microgranular enclaves and host granitoids from the Early Cretaceous Gudaoling batholith in the Liaodong Peninsula, NE China, in order to constrain the sources and petrogenesis of granites. The zircon U–Pb age of the enclaves (120 ± 1 Ma) is identical to that of the host monzogranite (120 ± 1 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the enclaves [ε Hf(t) = +4.5 to −6.2] is distinct from the host monzogranite [ε Hf(t) = −15.1 to −25.4], indicating that both depleted mantle and crustal sources contributed to their origin. The depleted mantle component was not previously revealed by geochemical and Nd and Sr isotopic studies, showing that zircon Hf isotopic data can be a powerful geochemical tracer with the potential to provide unique petrogenetic information. Some wall-rock contamination is indicated by inherited zircons with considerably older U–Pb ages and low initial Hf isotopic compositions. Hafnium isotopic variations in Early Cretaceous zircons rule-out simple crystal–liquid fractionation or restite unmixing as the major genetic link between enclaves and host rocks. Instead, mixing of mantle-derived mafic magmas with crustal-derived felsic magmas, coupled with assimilation of wall rocks, is compatible with the data. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号