首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Radial‐trace time–frequency peak filtering filters a seismic record along the radial‐trace direction rather than the conventional channel direction. It takes the spatial correlation of the reflected events between adjacent channels into account. Thus, radial‐trace time–frequency peak filtering performs well in denoising and enhancing the continuity of reflected events. However, in the seismic record there is often random noise whose energy is concentrated in certain directions; the noise in these directions is correlative. We refer to this kind of random noise (that is distributed randomly in time but correlative in the space) as directional random noise. Under radial‐trace time–frequency peak filtering, the directional random noise will be treated as signal and enhanced when this noise has same direction as the signal. Therefore, we need to identify the directional random noise before the filtering. In this paper, we test the linearity of signal and directional random noise in time using the Hurst exponent. The time series of signals with high linearity lead to large Hurst exponent value; however, directional random noise is a random series in time without a fixed waveform and thus its linearity is low; therefore, we can differentiate the signal and directional random noise by the Hurst exponent values. The directional random noise can then be suppressed by using a long filtering window length during the radial‐trace time–frequency peak filtering. Synthetic and real data examples show that the proposed method can remove most directional random noise and can effectively recover the reflected events.  相似文献   

2.
In tight gas sands, the signal‐to‐noise ratio of nuclear magnetic resonance log data is usually low, which limits the application of nuclear magnetic resonance logs in this type of reservoir. This project uses the method of wavelet‐domain adaptive filtering to denoise the nuclear magnetic resonance log data from tight gas sands. The principles of the maximum correlation coefficient and the minimum root mean square error are used to decide on the optimal basis function for wavelet transformation. The feasibility and the effectiveness of this method are verified by analysing the numerical simulation results and core experimental data. Compared with the wavelet thresholding denoise method, this adaptive filtering method is more effective in noise filtering, which can improve the signal‐to‐noise ratio of nuclear magnetic resonance data and the inversion precision of transverse relaxation time T2 spectrum. The application of this method to nuclear magnetic resonance logs shows that this method not only can improve the accuracy of nuclear magnetic resonance porosity but also can enhance the recognition ability of tight gas sands in nuclear magnetic resonance logs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号