首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

2.
《International Geology Review》2012,54(15):1835-1864
The Yinshan deposit is a large epithermal-porphyry polymetallic deposit, and the timing and petrogenesis of ore-hosting porphyries have been hotly debated. We present new results from geochemical, whole-rock Sr–Nd and zircon U–Pb–Hf–O isotopic investigations. Zircon U–Pb data demonstrate that the quartz porphyry, dacitic porphyry, and quartz dioritic porphyry formed at ?172.2 ± 0.4 Ma, ?171.7 ± 0.5 Ma, and ?170.9 ± 0.3 Ma, respectively. Inherited zircon cores show significant age spreads from ?730 to ?1390 Ma. Geochemically, they are high-K calc-alkaline or shoshonitic rocks with arc-like trace element patterns. They have similar whole-rock Nd and zircon Hf isotopic compositions, yet an increasing trend in ?Nd(t) and ?Hf(t) values typifies the suite. Older (inherited) zircons of the three porphyries display Hf compositions comparable to those of the Jiangnan Orogen basement rocks. In situ zircon oxygen isotopic analyses reveal that they have similar oxygen isotopic compositions, which are close to those of mantle zircons. Moreover, a decreasing trend of δ18O values is present. We propose that the ore-related porphyries of the Yinshan deposit were emplaced contemporaneously and derived from partial melting of Neoproterozoic arc-derived mafic (or ultra-mafic) rocks. Modelling suggests that the quartz porphyries, dacitic porphyries, and quartz dioritic porphyries experienced ?25%, ?10%, and ?10% crustal contaminations by Shuangqiaoshan rocks. Our study provides important constraints on mantle–crust interaction in the genesis of polymetallic mineralization associated with Mesozoic magmatism in southeastern China.  相似文献   

3.
The northwest Zhejiang Province is a key domain for providing deep insight into the crust–mantle interaction and tectonic evolution of the South China block. In this paper, we collect geochemical, geochronological, and isotopic data of the Jurassic porphyries in this region, and investigated the Huangbaikeng ore-bearing porphyry in the Tongcun Mo–Cu deposit, using it as an example to uncover the porphyry petrogenesis and evaluate their metallogenic potential. Two varieties of the Huangbaikeng porphyry were distinguished: the medium- to coarse-grained type and medium- to fine-grained type. Zircon Sensitive High-Resolution Ion Microprobe U–Pb dating indicates that they were emplaced at 161.8 ± 2.8 and 162.7 ± 3.5 Ma, respectively, which are consistent with the molybdenite Re–Os ages of 163.9–161.8 Ma. The inherited zircons age spectrum significantly recorded a series of geological events, for example, assembly and breakup of the Columbia and Rodinia supercontinent, and the Triassic collision of Yangtze and North China blocks. Whole rock Sr–Nd and Jurassic zircon Hf isotopic data yield mostly negative εHf(t) values (0.5 to ?8.4) and εNd(t) values (?0.79 to ?4.82). Besides the Huangbaikeng porphyry, all the Jurassic porphyries in the northwest Zhejiang Province have a wide range of SiO2 contents (76.78–60.91 wt.%). They do not contain typical aluminous minerals (e.g. cordierite and garnet), and are mainly metaluminous to weakly peraluminous with high Na2O, low FeOT/MgO, and Zr + Nb + Ce + Y concentrations in composition. They thus fit the I-type granite definition. Some major and trace elements show strong correlations with SiO2, possibly indicating extensive fractional crystallization during their magma evolution. Tectonic discriminations imply that these plutons were likely formed in a volcanic arc regime possibly related to subduction of the Palaeo-Pacific plate. Sr–Nd–Hf isotopic data suggest a mixed source of the Mesoproterozoic crust and 30–50% mantle components. Compared with the adjacent Dexing Cu-bearing porphyies, which have more positive εHf(t) and εNd(t) values with more significant mantle components (55–70%), the Jurassic porphyries in the northwest Zhejiang Province probably lack metallogenic potential to form a giant porphyry copper deposit as Dexing.  相似文献   

4.
The Yangchang granite‐hosted Mo deposit is typical of the Xilamulun metallogenic belt, which is one of the important Mo–Pb–Zn–Ag producers in China. A combination of major and trace element, Sr, Nd and Pb isotope, and zircon U–Pb age data are reported for the Yangchang batholith to constrain its petrogenesis and Mo mineralization. Zircon LA‐ICPMS U–Pb dating yields mean ages of 138 ± 2 and 132 ± 2 Ma for monzogranite and granite porphyry, respectively. The monzogranites and granite porphyries are calc‐alkaline with K2O/Na2O ratios of 0.75–0.92 and 1.75–4.42, respectively. They are all enriched in large‐ion lithophile elements (LILEs) and depleted in high‐field‐strength elements (HFSEs) with negative Nb and Ta anomalies in primitive‐mantle‐normalized trace element diagrams. The monzogranites have relatively high Sr (380–499 ppm) and Y (14–18 ppm) concentrations, and the granite porphyries have lower Sr (31–71 ppm) and Y (5–11 ppm) concentrations than those of monzogranites. The monzogranites and granite porphyries have relatively low initial Sr isotope ratios of 0.704573–0.705627 and 0.704281, respectively, and similar 206Pb/204Pb ratios of 18.75–18.98 and 18.48–18.71, respectively. In contrast, the εNd(t) value (−3.7) of granite porphyry is lower than those of monzogranites (−1.5 to −2.7) with Nd model ages of about 1.0 Ga. These geochemical features suggest that the monzogranite and granite porphyries were derived from juvenile crustal rocks related to subduction of the Paleo‐Pacific plate under east China. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Both Pacific and Neo-Tethys plates had major influences on the Cretaceous magmatisms in southeastern China. The subduction of the Neo-Tethys plate is, however, not well studied. This paper reports zircon U–Pb ages, Lu–Hf isotopes, whole-rock geochemistry, and Sr–Nd isotopes for the Qianjia intrusive rocks in Hainan Island, southeast China. LA-inductively coupled plasma mass spectrometry zircon U–Pb dating of granites and dark enclave monzonite in the area yield magmatic crystallization ages of ca. 100 Ma, which are consistent with other Late Cretaceous granites, e.g. Baocheng, Tunchang, and Yaliang. Both rocks show high-K calc-alkaline compositions and metaluminous to weakly peraluminous signatures belonging to I-type rocks. They are enriched in the alkalis, Rb, Th, U, K, and light rare earth elements, depleted in Nb, Ta, Ti, and P, and characterized by high Al2O3 contents (14–15 wt%) and high Mg# values (50–53). Among them, some of granodiorites have geochemical affinities of adakitic rocks. Zircon εHf(t) values range from ?5.97 to ?1.18, with fairly constant whole-rock Sr–Nd isotopes (ISr = 0.7084–0.7086; εNd(t) = ?4.97 to ?4.29) similar with those of the Cretaceous mafic dikes (136–81 Ma) in Hainan Island, which are the result of partial melting of subduction-related sub-continental lithospheric mantle. Combined with Sr–Nd isotopes and negative Hf isotope, Qianjia intrusive rocks were likely derived from hybrid melts of underplated continental crust-derived with mantle-derived, then experienced varied degrees of fractional crystallization. According to the latest geophysical, sedimentological, and geochemical data, previous authors identified a Cretaceous E–W-trend subduction zone in the northern margin of the South China Sea. Combined with the southern margin magmatisms (110–80 Ma) and magmatisms of ~120 Ma distributed east–west ward from the Philippines to the Vietnam, We preferred that the subduction of the E–W-trend Neo-Tethys plate was the main geodynamic mechanism which induced the Cretaceous large-scale magmatisms in the southern margin of South China Block.  相似文献   

6.
The Laojiagou Mo deposit is a newly discovered porphyry Mo deposit located in the Xilamulun Mo metallogenic belt, Northeast China. Mo mineralization mainly occurred within the monzogranite and monzogranite porphyry. Re–Os isochron dating of molybdenites indicate a mineralization age of 234.9 ± 3.1 Ma. Zircon LA–ICP–MS U–Pb analysis for monzogranite porphyry and monzogranite yield 206Pb/238U ages of 238.6 ± 1.8 and 241.3 ± 1.5 Ma, respectively, indicating that Laojiagou Mo mineralization is related to Middle Triassic magmatism. Hf isotopic compositions of zircons from both monzogranite porphyry and monzogranite are characterized by positive εHf(t) values [εHf(t) = 2.9–7.3 and 1.5–7.9, respectively] and young TDM2 model ages, which implies that the magma was derived from juvenile crust created during accretion of the Central Asian Orogenic Belt (CAOB). Identification of the Laojiagou Mo deposit adds another important example of Triassic Mo mineralization in the Xilamulun Mo metallogenic belt where most Triassic Mo deposits in northeast China cluster around the northern margin of North China Craton. Based on the regional geological setting and geochronological and Hf isotope characteristics, we propose that Triassic Mo deposits and related magmatic rocks in northeast China formed during the last stages of evolution of the CAOB. These deposits formed during post-collisional extension after the closure of the Palaeo-Asian Ocean and amalgamation of the North China–Mongolian Block with the Siberian Craton.  相似文献   

7.
The Almalyk porphyry cluster in the western part of the Central Asian Orogenic Belt is the second largest porphyry region in Asia and hence has attracted considerable attention of the geologists. In this contribution, we report the zircon U–Pb ages, major and trace element geochemistry as well as Sr–Nd isotopic data for the ore-related porphyries of the Sarycheku and Kalmakyr deposits. The zircon U–Pb ages (Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)) of ore-bearing quartz monzonite and granodiorite porphyries from the Kalmakyr deposit are 326.1 ± 3.4 and 315.2 ± 2.8 Ma, and those for the ore-bearing granodiorite porphyries and monzonite dike from the Sarycheku deposit are 337.8 ± 3.1 and 313.2 ± 2.5 Ma, respectively. Together with the previous ages, they confine multi-phase intrusions from 337 to 306 Ma for the Almalyk ore cluster. Geochemically, all samples belong to shoshonitic series and are enriched in large-ion lithophile elements relative to high field strength elements with very low Nb/U weight ratios (0.83–2.56). They show initial (87Sr/86Sr)i ratios of 0.7059–0.7068 for Kalmakyr and 0.7067–0.7072 for Sarycheku and low εNd(t) values of ?1.0 to ?0.1 for Kalmakyr and ?2.3 to 0.2 for Sarycheku, suggesting that the magmas were dominantly derived from a metasomatized mantle wedge modified by slab-derived fluids with the contribution of the continental crust by assimilation-fractional-crystallization process. Compared to the typical porphyry Cu deposits, the ore-bearing porphyries in the Almalyk cluster are shoshonitic instead of the calc-alkaline. Moreover, although the magmatic events were genetically related to a continental arc environment, the ore-bearing porphyries at Sarycheku and Kalmakyr do not show geochemical signatures of typical adakites as reflected in some giant porphyry deposits in the Circum-Pacific Ocean, indicating that slab-melting may not have been involved in their petrogenesis.  相似文献   

8.
ABSTRACT

In this article we present zircon U–Pb ages, Hf isotopes, and whole-rock geochemistry of the Longzhu rhyolite porphyry from the Cathaysia Block, Southeast China to constrain its petrogenesis and provide insights into the early Precambrian tectonic evolution of the Cathaysia Block. LA-ICP-MS zircon U–Pb dating of a representative sample yields a weighted mean 206Pb/207Pb age of 1819 ± 16 Ma, interpreted as the crystallization age of the Longzhu rhyolite porphyry. Zircons from this sample have εHf(t) values ranging from – 8.4 to – 2.2 and THfDM2 model ages from 2.76 to 2.46 Ga. The whole-rock Nd isotopic data from the Longzhu rhyolite porphyries yield εNd(t) values spanning – 6.3 to – 4.7 and TNdDM2 model ages from 2.81 to 2.69 Ga. The rhyolite porphyries have geochemical features similar to those of the typical A-type granites (rhyolites), with high SiO2, total alkali contents and FeOt/MgO ratios, and low CaO and MgO contents. Additionally, the rhyolite porphyries have high total rare earth element concentrations (627 ~ 760 ppm), high (La/Yb)N values (14.5 ~ 26.9), strongly negative Eu anomalies (δEu = 0.28 ~ 0.41), and display enrichments of Rb, Ga, Th, and U and depletions of Sr, Nb, Ta, Eu, and Ti. The geochemical and Nd-Hf isotopic features suggest that the Palaeoproterozoic Longzhu rhyolite porphyries were generated by partial melting of source rocks similar to those of the Badu Complex in an intra-plate extensional setting. The results from this study, when combined with existing geochronological data, further demonstrate that the Palaeoproterozoic rocks of Wuyishan terrane probably represent a remnant of the Columbia supercontinent.  相似文献   

9.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

10.
ABSTRACT

The Tiantang Cu–Pb–Zn polymetallic deposit in western Guangdong, South China, is hosted in the contact zone between the monzogranite porphyry and limestone of the Devonian Tianziling Formation. Orebodies occur in the skarn and skarnized marble as bedded, lenses, and irregular shapes. In this study, we performed LA-ICP-MS zircon U–Pb dating, zircon trace elements, and Hf isotopic analyses on the Tiantang monzogranite porphyry closely related to Cu–Pb–Zn mineralization. Twenty-two zircons from the sample yield excellent concordia results with a weighted mean 206Pb/238U age of 104.5 ± 0.7 Ma, which shows that the emplacement of the monzogranite porphyry in the Tiantang deposit occurred in the Early Cretaceous. The zircon U–Pb age is largely consistent with the sulphide Rb–Sr isochron ages, indicating that both the intrusion and Cu–Pb–Zn mineralization were formed during the Early Cretaceous in South China. The εHf(t) values of three inherited zircons from the monzogranite porphyry are 13.1, 11.9, and 12.9, respectively, and the two-stage Hf model ages are 1096 Ma, 1087 Ma, and 1055 Ma, respectively. Except for the three inherited zircons, all εHf(t) values of zircons are negative and have a range of ?7.6 to ?3.4, with the two-stage model ages (TDM2) of 1380–1643 Ma, which indicates the rock-forming materials were mainly derived from the partial melting of Mesoproterozoic to Neoproterozoic crust rocks, and probably included some Neoproterozoic arc-related volcanic-sedimentary materials. In this study, the monzogranite porphyry from the Tiantang deposit has calculated Ce4+/Ce3+ ratios of zircon ranging from 91 to 359, indicative of a more oxidized signature and significant prospecting potential for ore-related magmatism. Based on ore deposit geology, isotope geochemistry, and geochronology of the Tiantang Cu–Pb–Zn deposit and regional geodynamic evolution, the formation of Early Cretaceous magmatism and associated polymetallic mineralization in South China is believed to be related to large-scale continental extension and subsequent upwelling of the asthenosphere.  相似文献   

11.
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.  相似文献   

12.
The medium-tonnage Sarsuk polymetallic Au deposit is located in the Devonian volcanic–sedimentary Ashele Basin of the south Altay Orogenic Belt (AOB), Northwest China. Within the deposit, the rhyolite porphyries and diabases are widespread, emplaced into strata. The orebodies are hosted by the rhyolite porphyries. We studied the petrography, geochemistry, and Sr–Nd–Hf isotopes of the rhyolite porphyries and diabases, in order to understand the petrogenesis of these rocks and their tectonic significance. They display typical bimodality in geochemistry compositions. The diabases are characterized by SiO2 contents of 44.84–59.77 wt.%, high Mg# values (43–69), enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in Nb and Ta, low (87Sr/86Sr)i (0.706687–0.707613) values, positive εNd(t) (4.8–6.8) values, and positive and high εHf(t) (7.15–15.19) values, suggesting a depleted lithosphere mantle source that might have been metasomatized by subduction-related components. The rhyolite porphyries show affinity to sanukitoid magmas contents [high SiO2 (78.6–81.82 wt.%) and MgO (3.38–5.94 wt.%, one sample at 0.61 wt.%), and enrichments in LILE and LREE], they were derived from the equilibrium reactions between a mantle source and subducted oceanic crust materials. Those characteristics together with the positive εNd(t) (4.1–8.4) and εHf(t) (2.88–15.17) values indicate that the diabases and rhyolite porphyries were generated from the same mantle peridotite source. But the rhyolite porphyries underwent fractional crystallization of Fe–Ti oxides, plagioclase, and apatite due to their negative Eu (δEu = 0.21–0.28) and P anomalies. According to the geochemical and isotopic data, the Sarsuk Middle Devonian igneous rocks are considered to be the products of the juvenile crustal growth in an island arc setting. The Sarsuk polymetallic Au deposit formed slightly later than the Ashele Cu–Zn deposit in the Ashele Basin, but they have the same tectonic setting, belonging to the trench–arc–basin system during extensional process in the south AOB.  相似文献   

13.
《International Geology Review》2012,54(10):1261-1279
The eastern Qinling belt is characterized by widespread Mesozoic post-orogenic magmatism and abundant Mo–(Au–Ag) polymetallic mineralization. Most Mo deposits in this belt are genetically related to Mesozoic granitoids. The tectonic context of this close spatial and temporal relationship is still debated. This study reports U–Pb ages and Hf isotopic composition of zircons, major and trace element and Sr–Nd–Pb isotopic composition of the Donggou granite porphyry, host rock to one of the important Mesozoic Mo deposits in this orogen. Based on geochemical results, the Donggou granite porphyry is a silica-supersaturated, high-K metaluminous A-type granite showing enrichment in light REEs, depletion in middle REEs and significant negative Eu, Ba, Nb, Sr, P, and Ti anomalies. Negative initial ?Nd values of??17.0 to??13.2 for whole-rock and negative initial ?Hf values of??19.9 to??7.8 for zircon suggest that the magma was derived from a mixture of Archaean/Proterozoic crustal rocks and mantle-derived or newly added crust. Its Pb isotopic composition is similar to the lower crust of the North China block, but different from superjacent country rocks (Xiong'er and Taihua Groups). Zircon U–Pb dating yields a late Mesozoic emplacement age of 118–117 Ma, identical with the third episode of Mo mineralization in the eastern Qinling–Dabie belt. We postulate that the Donggou Mo-related porphyry granite formed by reworking of North China lower crust with significant input of juvenile material. The magmas formed in an extensional tectonic setting, induced by lithospheric thinning and asthenospheric upwelling beneath eastern China during Cretaceous time.  相似文献   

14.
The Tongcun Mo porphyry deposit in northwest Zhejiang is hosted in three porphyry units: Huangbaikeng, Songjiazhuang, and Tongcun, from southwest to northeast. U–Pb zircon ages of 162?±?3.0 Ma for the Huangbaikeng porphyry, 159.9?±?3.0 Ma for the Songjiazhuang porphyry, and 167.6–155.6 Ma for the Tongcun porphyry indicate that these intrusions formed during the Jurassic and are most likely associated with the northwestward subduction of the Izanagi Plate. Trace element compositions of zircons from the Tongcun deposit constrain the oxygen fugacity (fO2) of the magma using zircon Ce anomalies and Ti-in-zircon temperatures. The average magmatic fO2 for the porphyries in the Tongcun deposit is fayalite–magnetite–quartz (FMQ)?+?2.7, which is similar to the Shapinggou (FMQ?+?3.2) and Dabaoshan (FMQ?+?3.5) Mo porphyry deposits, but much higher than that of the reduced Cretaceous ore-barren Shangjieshou porphyry (FMQ-1.1) around 8 km away from the Tongcun deposit. The distinct difference in magmatic oxygen fugacity between the Jurassic and Cretaceous porphyries may help to explain the absence of Mo porphyry mineralization in northwest Zhejiang during the Cretaceous.  相似文献   

15.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

16.
The granitic dykes in the Badu Group,Zhejiang Province,South China provide important insights on tectonic setting and crustal evolution of the South China Block(SCB) and the Indochina Block during Triassic.Here we report LA-ICP-MS U-Pb data of granitic rocks from the Hucun and Kengkou which show early Triassic ages of 242 ± 2 and 232 ± 3 Ma,respectively,representing their timing of emplacement.The dyke rocks are enriched in K,Al,LREE,Rb,Th.U,and Pb.and are depleted in Nb,Ta,Sr,and Ti.The rocks are characterized by highly fractionated REE patterns with(La/Yb)N ratios of 28.46-38.07 with strong negative Eu anomalies(Eu/Eu* = 0.65-0.73).In situ Hf isotopic analyses of zircons from the Hucun granite yielded ε_(Hf)(t) values of-13.9 to-6.4 and two-stage depleted mantle Hf model ages of 1.68-2.15 Ga,which indicate that the magma was formed by partial melting of the Paleoproterozoic metasedimentary protoliths in the Cathaysia Block.The zircons from the Kengkou granite have ε_(Hf)(t) values ranging from 40.7 to 31.5 and yield two-stage depleted mantle Hf model ages of 0.99-2.49 Ga,indicating magma origin from a mixed source.The Hucun and Kengkou dykes,together with the Triassic A-type granites in SE China were probably generated during magmatism associated with crust-mantle decoupling along the convergent plate boundary between SCB and the Indochina Block.  相似文献   

17.
The Duolong porphyry Cu–Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au) was recently discovered in the southern Qiangtang terrane, central Tibet. Here, new whole‐rock elemental and Sr–Nd–Pb isotope and zircon Hf isotopic data of syn‐ and post‐ore volcanic rocks and barren and ore‐bearing granodiorite porphyries are presented for a reconstruction of magmas associated with Cu–Au mineralization. LA–ICP–MS zircon U–Pb dating yields mean ages of 117.0 ± 2.0 and 120.9 ± 1.7 Ma for ore‐bearing granodiorite porphyry and 105.2 ± 1.3 Ma for post‐ore basaltic andesite. All the samples show high‐K calc‐alkaline compositions, with enrichment of light rare earth elements (LREE) and large ion lithophile elements (LILE: Cs and Rb) and depletion of high field strength elements (HFSE: Nb and Ti), consistent with the geochemical characteristics of arc‐type magmas. Syn‐ and post‐ore volcanic rocks show initial Sr ratios of 0.7045–0.7055, εNd(t) values of −0.8 to 3.6, (206Pb/204Pb)t ratios of 18.408–18.642, (207Pb/204Pb)t of 15.584–15.672 and positive zircon εHf(t) values of 1.3–10.5, likely suggesting they dominantly were derived from metasomatized mantle wedge and contaminated by southern Qiangtang crust. Compared to mafic volcanic rocks, barren and ore‐bearing granodiorite porphyries have relatively high initial Sr isotopic ratios (0.7054–0.7072), low εNd(t) values (−1.7 to −4.0), similar Pb and enriched zircon Hf isotopic compositions [εHf(t) of 1.5–9.7], possibly suggesting more contribution from southern Qiangtang crust. Duolong volcanic rocks and granodiorite porphyries likely formed in a continental arc setting during northward subduction of the Bangong–Nujiang ocean and evolved at the base of the lower crust by MASH (melting, assimilation, storage and homogenization) processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Basaltic porphyries from the northeast North China craton (NCC) provide an excellent opportunity to examine the nature of their mantle source and the secular evolution of the underlying mantle lithosphere. In addition, the study helps to constrain the age and the mechanism of NCC lithospheric destruction. In this paper, we report geochronological, geochemical, and Sr–Nd isotopic analyses of a suite of mafic lavas. Detailed laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U–Pb dating yielded an age of 223.3 ± 1.1 million years, which we regard as representing the crystallization age of the basaltic porphyries. The bulk-rock analysed samples are enriched in both large ion lithophile elements (LILEs) (i.e. Ba, Sr, and Pb) and light rare earth elements (LREEs), but depleted in high field strong elements (HFSEs) (i.e. Nb, Ta, Zr, Hf, and Ti) and heavy rare earth elements (HREEs), without significant Eu anomalies (Eu/Eu*?= 089–0.98). The basaltic porphyries have undergone low degrees (~5%) of partial melting of a garnet-bearing lherzolite mantle. The rocks display very uniform (87Sr/86Sr) i (0.70557–0.70583) and negative ?Nd (t) values (–11.9 to –10.1). These features indicate that the western Liaoning basaltic porphyries were derived from a common enriched lithosphere mantle that had previously been metasomatized by fluids related to subduction of Palaeo-Asian sedimentary units. However, the mafic melts were not affected to a significant degree by crustal contamination. Based on earlier studies, these findings provide new evidence that the northeast margin of the NCC had undergone a phase of post-orogenic extensional tectonics during the Middle Triassic. Furthermore, lithospheric thinning occurring across the northern NCC might have been initiated during Early Triassic times and was likely controlled by the final closure of the Palaeo-Asian Ocean, as well as the collision of Mongolian arc terrenes with the NCC.  相似文献   

19.
ABSTRACT

Late Mesozoic granitoids in South China are generally considered to have been generated under the Palaeo–Pacific tectonic regime, however, the precise subduction mechanism remains controversial. Detailed zircon U–Pb geochronological, major and trace element, and Sr–Nd–Hf isotopic data are used to document the spatiotemporal distribution of the granitoids in Zhejiang Province. Three periods of late Mesozoic magmatism, including stage 1 (170–145 Ma), stage 2 (145–125 Ma), and stage 3 (125–90 Ma), can be distinguished based on systematic zircon U–Pb ages that become progressively younger towards the SE. Stage 1 granitic rocks are predominantly I-type granitoids, but minor S- or A-type rocks also occur. Sr–Nd–Hf isotopic data suggest that these granitoids were generated from hybrid magmas that resulted from mixing between depleted mantle-derived and ancient crust-derived magmas that formed in an active continental margin environment related to the low-angle subduction of the Palaeo–Pacific plate beneath Southeast China mainland. Stage 2 granitic rocks along the Jiangshan–Shaoxing Fault are predominantly I- and A-type granitoids with high initial 87Sr/86Sr, low εNd(t), εHf(t) values and Mesoproterozoic Nd–Hf model ages. These results suggest that stage 2 granitoids were derived from mixing between enriched mantle-derived mafic magmas and ancient crust-derived magmas in an extensional back-arc setting related to rollback of the Palaeo–Pacific slab. Stage 3 granitic rocks along the Lishui–Yuyao Fault comprise mainly A- and I-type granitoids with high initial 87Sr/86Sr ratios, and low εNd(t) and εHf(t) values, again suggesting mixing of enriched mantle-derived mafic magmas with more ancient crustal magmas in an extensional back-arc setting, related in this case to the continued rollback the Palaeo–Pacific plate and the outboard retreat of its subduction zone.  相似文献   

20.
In northeastern Vietnam, Late Paleozoic and Permo-Triassic granitic plutons are widespread, but their tectonic significance is controversial. In order to understand the regional magmatism and crustal evolution processes of the South China block (SCB), this study reports integrated in situ U–Pb, Hf–O and Sr–Nd isotope analyses of granitic rocks from five plutons in northeastern Vietnam. Zircon SIMS U–Pb ages of six granitic samples cluster around in two groups 255–228 Ma and 90 Ma. Bulk-rock εNd (t) ranges from −11 to −9.7, suggesting that continental crust materials were involved in their granitic genesis. In situ zircon Hf–O isotopic measurements for the granitic samples yield a mixing trend between the mantle- and supracrustal-derived melts. It is suggested that the granitic rocks were formed by re-melting of the continental crust. These new data are compared with the Paleozoic and Mesozoic granitic rocks of South China. We argue that northeastern Vietnam belongs to the South China block. Though still speculated, an ophiolitic suture between NE Vietnam and South China, so-called Babu ophiolite, appears unlikely. The Late Paleozoic to Mesozoic magmatism in the research area provides new insights for the magmatic evolution of the South China block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号