首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to experimentally evaluate the effects of simulated herbivory on the ability of a freshwater marsh plant to recover from temporary saltwater intrusion such as can be caused by tropical storms. Sods containingSagittaria lancifolia, a dominant plant in interior coastal marshes, were manipulated in the field so as to subject plants to a pulse of 15‰ salt water for a duration of 1 wk. In addition to the exposure to salt water, some plants were also subjected to both short-term and long-term flooding treatments of 20 cm, and to simulated herbivory (clipping). Following exposure to salt water, plants were allowed to recover over the winter and were harvested the next June. Neither simulated herbivory, nor salinity, nor flooding caused any long-term effect either singly or in pairwise combinations. However, when plants were subjected to herbivory, salt water, and flooding simultaneously, reduced growth and plant death occurred. These results suggest that high levels of grazing by herbivores may increase the susceptibility of coastal marsh plants to damage from saltwater intrusion. *** DIRECT SUPPORT *** A01BY073 00002  相似文献   

2.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

3.
There is a need for research into bioindicators of stress in threatened plant communities such as coastal wetlands. Land subsidence, diversion of sediment, and salt-water intrusion produce stresses associated with waterlogging, elevated salinity, and nutrient depletion. Temporal and spatial environmental variation (soil redox potential, interstitial water salinity, pH, ammonium and phosphorus, and cation and trace metal concentrations) was analyzed near Lake de Cade, Louisiana, in a brackish marsh which is a mosaic of healthy plant communities interspersed with areas where wetland loss is occurring. Environmental variation was related to indicators of stress inSpartina patens, which included variables derived from the adenine nucleotide levels in plants, leaf spectral reflectance, leaf proline concentrations, and shoot elongation. In a comparison of burned and unburned sites, streamside and inland marsh, and along a salinity gradient, among-site differences were found in spectral reflectance and adenine-nucleotide-related indicators. Although it was difficult to relate a single causal environmental variable to the response of a specific indicator, spectral reflectance in the visible light range responded to salinity or to elements borne in seawater, and adenine-nucleotide indices were sensitive to nutrient availability. The ability of indicators to detect plant responses changed during the growing season, suggesting that they were responding to the changing importance of different environmental factors. In addition, some reflectance indicator responses occurred along salinity gradients when salinity differences were less than those that were found to have ecologically meaningful effects in greenhouse experiments. A multivariate numerical approach was used to relate environmental variation with indicator responses. We concluded that factors which in combination cause the degradation and loss of Louisiana wetlands produce environmental conditions that are only subtly different from those in vigorously growing marsh communities.  相似文献   

4.
Nutrient availability is known to mediate plant community structure in many systems, but relatively few studies of nutrient effects have been done in systems where strong gradients in physical stress might constrain the effects of nutrients. Recent studies in New England, United States, salt marshes indicate that nutrients may strongly mediate plant community composition by increasing the competitive ability of stress-tolerant species that are normally displaced by competition to recently-disturbed or low-intertidal habitats. It is unknown whether these results can be generalized to salt marshes in other geographic regions that experience different climates, tidal regimes, and edaphic conditions. To address the generality of these results from New England, we fertilized seven different mixtures of salt marsh plants at study sites on the southeast and Gulf coasts of the U.S. Two of these mixtures were studied in both geographic regions. Consistent with results from New England, fertilization always increased the biomass of the low-marsh dominantSpartina alterniflora and usually led to it increasing in dominance at the expense of high-marsh species. Fertilization also led to increased community dominance byDistichlis, but only in a mixture where it was already common. Fertilization led to changes in plant dominance patterns in four of the seven types of mixtures that we studied. Results were not a function of edaphic conditions, at least within the range included in our study, and were consistent between the southeastern and Gulf coasts, which experience markedly different tidal regimes. The broad similarity of these results suggests that changes in nutrient input may lead to predictable changes in the composition of similar salt marsh plant communities across large geographic areas despite site to site variation in the abiotic environment.  相似文献   

5.
The effects of system closure on the dynamics of productivity and nutrient cycling are examined in four wetlands that differ in plant growth form and magnitudes and sources of water input and nutrient loading. Dynamics in relatively closed ombrotrophicCarex marsh andTaxodium swamp systems from Okefenokee Swamp are compared to those in open, rheotrophic riparian systems. The riparian systems examined includeZizaniopsis marshes along the tidal freshwater portion of the Altamaha River in Georgia and a matureTaxodium-Nyssa swamp along the Cache River in Illinois. Water budgets in the ombrotrophic systems are dominated by precipitation inputs while in the riparian wetlands they are dominated by overbank flooding. Nutrient loading to the open and closed systems differs by only two orders of magnitude, the former depending on atmospheric inputs and the latter depending on tidal and riverine inputs. Comparisons of nutrient import, export, and retention indicate that greater than 90% of inorganic nutrients are retained in the closed systems while less than 5% are retained in the open systems. Nutrient budgets for wetland vegetation, including aboveground uptake, root uptake, leaching, death, and translocation, are constructed. Strong differences in nutrient conservation within plant communities are found between marsh and forested closed systems and between open and closed systems as a whole. There is the indication that nutrients turn over more rapidly and nutrient cycles are less retentive and conservative as systems become more open and nutrient inputs increase. Nutrients turn over more rapidly in marshes with nonwoody vegetation than in swamp forests. This phenomena is partially attributable to the growth form of the vegetation as trees store vast amounts of high Canutrient ratio biomass in boles. Substituting space for time and marsh and swamp wetlands for young and mature ecosystems enables patterns of productivity and nutrient cycling for these wetlands to be compared with Odum’s (1969) predictions of ecosystem development. Patterns of ecosystem development in wetlands agree with those predicted for terrestrial systems in general, but there are many areas of contradiction. The degree of system closure appears to be a major factor controlling nutrient retention and cycling in wetland ecosystems. System closure is also likely to be important in determining the response of wetland systems to global increases in CO2 levels.  相似文献   

6.
Top–down and bottom–up effects interact to structure communities, especially in salt marshes, which contain strong gradients in bottom–up drivers such as salinity and nutrients. How omnivorous consumers respond to variation in prey availability and plant quality is poorly understood. We used a mesocosm experiment to examine how salinity, nutrients, an omnivore (the katydid Orchelimum fidicinium) and an herbivore (the planthopper Prokelisia spp.) interacted to structure a simplified salt marsh food web based on the marsh grass Spartina alterniflora. Bottom–up effects were strong, with both salinity and nutrients decreasing leaf C/N and increasing Prokelisia abundance. Top–down effects on plants were also strong, with both the herbivore and the omnivore affecting S. alterniflora traits and growth, especially when nutrients or salt were added. In contrast, top–down control by Orchelimum of Prokelisia was independent of bottom–up conditions. Orchelimum grew best on a diet containing both Spartina and Prokelisia, and in contrast to a sympatric omnivorous crab, did not shift to an animal-based diet when prey were present, suggesting that it is constrained to consume a mixed diet. These results suggest that the trophic effects of omnivores depend on omnivore behavior, dietary constraints, and ability to suppress lower trophic levels, and that omnivorous katydids may play a previously unrecognized role in salt marsh food webs.  相似文献   

7.
Herbivory is a common process in salt marshes. However, the direct impact of marsh herbivory on nutrient cycling in this ecosystem is poorly understood. Using a 15N enrichment mesocosm study, we quantified nitrogen (N) cycling in sediment and plants of black needlerush (Juncus roemerianus) salt marshes, facilitated by litter decomposition and litter plus grasshopper feces decomposition. We found 15 times more 15N recovery in sediment with grasshopper herbivory compared to sediment with no grasshopper herbivory. In plants, even though we found three times and a half larger 15N recovery with grasshopper herbivory, we did not find significant differences. Thus, herbivory can enhance N cycling in black needlerush salt marshes sediments and elevate the role of these salt marshes as nutrient sinks.  相似文献   

8.
Increased freshwater and nutrient runoff associated with coastal development is implicated in dramatically altering estuarine communities along eastern US shorelines. We examined effects of three categories of shoreline development on high-marsh environments within Murrells Inlet, South Carolina, USA by measuring sediment nutrients, porewater salinity, plant species diversity, and above- and belowground plant biomass. Effects on new plant growth also were examined in plot clearing and transplantation experiments. Greater nutrient availability in sediments along developed shorelines was reflected in greater aboveground biomass and nitrogen storage in Juncus roemerianus plant tissue. Plant species composition was not significantly different among levels of shoreline development. Zinc concentrations were greater in sediments from developed shorelines and may represent an easily measured indicator of shoreline development. Recently accelerating shoreline development in the southeastern USA may alter plant production, nitrogen storage, and sediment metal content in salt marshes.  相似文献   

9.
Effects of soil factors on physiological indicators ofSpartina patens and live standing crop of the macrophyte community were investigated in a brackish marsh. Three distinct physiognomic zones were studied along a transect perpendicular to a tidal creek: the marsh edge, which was directly adjacent to the creek; the levee berm, 6 to 8 m from the creek; and the inland zone, which extended through the marsh interior. Soil physicochemical factors (soil moisture, redox potential, interstitial pH, salinity, and ammonium and sulfide concentrations) were compared to physiological indicators ofSpartina patens (leaf adenine nucleotides, root alcohol dehydrogenase (ADH) activity, and levels of ethanol, lactate, alanine and malate in the roots). In correlation matrices of soil and plant factors, increases in soil moisture and decreases in redox potential were associated with depressed leaf adenylate energy charge ratios (AEC, an integrative measure of plant stress) and elevated ADH activities and metabolite levels in the roots. ADH activity was greatest in roots from the inland zone where soil waterlogging was greatest and exhibited seasonal increases that followed seasonal declines in soil redox potential. Leaf AEC was greatest in the berm and generally lowest in the inland plants. End of season live standing crop was also greatest on the berm, but did not closely follow any edaphic trends across the three zones. This suggests that several factors, (i.e., soil aeration, and sulfide and nitrogen levels) may be of greater importance to standing crop than any single factor, as is thought for salt marshes dominated byS. alterniflora.  相似文献   

10.
In the salt marshes of Tomales Bay, California, where grazing by cattle increases the input of nitrogen to the marsh (either directly or indirectly as runoff from within the salt marsh watershed), high salt marsh vegetation is dominated byDistichlis spicata and is less diverse than marshes without excess nutrients. Using a field experiment, I investigated the role of soil fertility on the plant community of the high salt marsh. I hypothesized that when soil fertility is increased by nitrogen addition plant productivity will increase, as indicated by height, biomass, and cover, and competitive exclusion, byD. spicata, will lead to a reduction in species richness and evenness, especially where the initial density ofDistichlis is high (from transplanting). After two growing seasons, biweekly nitrogen addition to the high salt marsh led to increased plant biomass and cover. Diversity was not reduced, and space preemption byDistichlis-transplants did not confer a competitive advantage. Although the dominant species thrived (e.g.,Salicornia virginica, D. spicata, Triglochin concinna) they did not displace subdominant species and decrease diversity. The vegetation response in this high salt marsh system does not support the hypothesis that as biomass and cover (indicators of productivity) increase in response to increased nitrogen, competitive exclusion will occur and diversity will decrease.  相似文献   

11.
Periphyton plays key ecological roles in karstic, freshwater wetlands and is extremely sensitive to environmental change making it a powerful tool to detect saltwater intrusion into these vulnerable and valuable ecosystems. We conducted field mesocosm experiments in the Florida Everglades, USA to test the effects of saltwater intrusion on periphyton metabolism, nutrient content, and diatom species composition, and how these responses differ between mats from a freshwater versus a brackish marsh. Pulsed saltwater intrusion was simulated by dosing treatment chambers monthly with a brine solution for 15 months; control chambers were simultaneously dosed with site water. Periphyton from the freshwater marsh responded to a 1-ppt increase in surface water salinity with reduced productivity and decreased concentrations of total carbon, nitrogen, and phosphorus. These functional responses were accompanied by significant shifts in periphytic diatom assemblages. Periphyton mats at the brackish marsh were more functionally resilient to the saltwater treatment (~?2 ppt above ambient), but nonetheless experienced significant shifts in diatom composition. These findings suggest that freshwater periphyton is negatively affected by small, short-term increases in salinity and that periphytic diatom assemblages, particularly at the brackish marsh, are a better metric of salinity increases compared with periphyton functional metrics due to functional redundancy. This research provides new and valuable information regarding periphyton dynamics in response to changing water sources in the southern Everglades that will allow us to extend the use of periphyton, and their diatom assemblages, as tools for environmental assessments related to saltwater intrusion.  相似文献   

12.
Coastal ecosystems such as eelgrass beds and salt marshes have always been valued for their high productivity and rich bounty of fish and shellfish. High plant productivity, complex physical structure, and suitable environmental characteristics combine to create areas of high production of important recreational and commercial species. If we are to successfully manage and restore these ecosystems, it is important to understand the mechanisms by which support of nekton may be affected by nutrient enrichment. A review of the literature suggests that there are some similarities and differences in the effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems. Nutrient enrichment may compromise the ability of these habitats to support fish and invertebrates before the habitat itself is gone. In both ecosystems, alteration of characteristics within the ecosystem (for example, stem density in seagrass and food webs in marshes) affect the support of nekton, even though the basic ecosystem is still clearly extant. Because of differences in natural ecosystem characteristics, loss of ecosystem function does not occur through the same mechanisms. In seagrass systems, physical structure is usually lost first, followed by alteration of food webs and finally changes in dissolved oxygen. In salt marsh systems, loss of dissolved oxygen may occur early in the process, followed by food web alterations and eventually changes in the physical structure may occur. For both seagrass and salt marsh ecosystems, the mechanisms suggested to operate at the ecosystem-level are often based on relatively small-scale plot experiments that have been conducted in only a few locations. A better understanding of how these ecosystems function across broad geographic regions will be needed to ensure functioning coastal ecosystems.  相似文献   

13.
The accumulation of selected plant nutrients and heavy metals in a rapidly accreting Louisiana salt marsh was examined. Sedimentation processes were shown to be supplying large amounts of plant nutrients to the marsh. Accumulation of heavy metals was low and appeared to be associated with the natural heavy metal content of incoming sediment rather than from a pollution source. A large portion of organic carbon from primary production remained in the marsh, contributing to the aggradation process of vertical marsh accretion. Nitrogen accumulated in the marsh at rates as great as 21 g per m2 per yr.  相似文献   

14.
Experimental chambers were used in a Virginia salt marsh to partition the tidal flux of dissolved nutrients occurring at the marsh surface and in the water column. On five dates from June to October 1989, six replicate chambers in the short Spartina alterniflora zone were monitored over complete tidal cycles. When reservoir water, used to simulate tidal flooding in the chambers, was initially low in dissolved nutrients, the marsh surface was a source of both ammonium and phosphate to the water column. Calculations of the physical processes of diffusion and advection could not account for total nutrient release from the marsh surface. We hypothesize the primary source of nutrients was organic matter mineralization in surface sediments, which released nutrients into the flooding water column. Assimilation (uptake) of phosphate measured in water-column incubation experiments was nearly equal to phosphate released from the marsh surface. Surface release of ammonium, however, was somewhat greater than water-column uptake. In this salt marsh, benthic production and release of ammonium and phosphate is comparable in magnitude to pelagic consumption, thereby yielding only a small “net” transfer of these nutrients to the estuary.  相似文献   

15.
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3?±?0.24 mm year?1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2?±?0.52 mm year?1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment availability, salinity, and elevation capital. Together, these two systems provide critical insight into the relationships between marsh elevation, high marsh plant community, and changing hydroperiods. Our results highlight that not all marshes in Southern New England may be responding to accelerated rates of RSLR in the same manner.  相似文献   

16.
Coastal salt marsh ecosystems contain strong environmental gradients that are anticipated to influence the D/H ratios recorded in the leaf waxes of salt-tolerant plants. We characterized the molecular and hydrogen isotopic composition of alkanes in plant and sediment samples as well as the D/H ratios of environmental and plant waters across an elevation and inundation gradient in a southern Californian, coastal salt marsh. We sampled the dominant salt marsh plant species: Salicornia virginica, Arthrocnemum subterminale and Jamuea carnosa (all succulents), as well as Monanthochloe littoralis and Limonium californicum (nonsucculents). Plant xylem water hydrogen isotopic compositions indicate a shift in source waters from meteoric influences at upland sites (δD value −20‰) to seawater dominated values (0‰) at lowland areas. We found leaf water D enrichment relative to xylem water ranging from mean δD values of +54‰ (upland) to +28‰ (lowland), interpreted as a reduction of transpiration with increasing inundation time. This has the effect of increasing the net fractionation between source water and leaf wax product across the environmental gradient from mean values of −101‰ (upland) to −134‰ (lowland), with an attenuated signal recorded in the δD values of plant leaf wax n-alkanes (−122‰ to −136‰). These results constrain the hydrogen isotopic composition of salt marsh organic matter that may contribute to marine carbon budgets of the Santa Barbara Basin, and further indicate the potential for plant leaf waxes to resolve paleoenvironmental change, including sea level change, in sediment cores from salt marsh ecosystems.  相似文献   

17.
Salt marshes are an important transition zone between terrestrial and marine ecosystems, and in their natural state, they often function to cycle or trap terrestrially derived nutrients and organic matter. Many US salt marshes were ditched during the twentieth century, potentially altering their functionality. The goal of this 4-year study was to assess the impact of water from ditches within seven salt marshes on estuarine water quality and plankton communities within four estuaries on Long Island, NY, USA. We found that concentrations of inorganic nutrients (ammonium, phosphate), dissolved and particulate organic nitrogen and carbon (POC, PON, DOC, DON), and total coliform bacteria were significantly enriched in salt marsh ditches compared to the estuaries they discharged into. In addition, concentrations of ammonium and DON became more enriched in ditches as tidal levels decreased, suggesting these constituents were generated in situ. Quantification of nitrogen sources in Flanders Bay, NY, suggested salt marsh ditches could represent a substantial source of N to this estuary during summer months. Experimental incubations demonstrated that water from salt marsh ditches was capable of significantly enhancing the growth of multiple classes of phytoplankton, with large diatoms and dinoflagellates displaying the most dramatic increases in growth. Experiments further demonstrated that salt marsh ditchwater was capable of significantly enhancing pelagic respiration rates, suggesting discharge from ditches could influence estuarine oxygen consumption. In summary, this study demonstrates that tidal draining of salt marsh ditches is capable of degrading multiple aspects of estuarine water quality.  相似文献   

18.
Aboveground production and tissue element composition of Spartina alterniflora were compared in bareier island marshes of different age off the Eastern Shore of Virginia. The marshes were also characterized by physical and chemical parameters of the substrate. The results suggest that sediment nutrient stock do not directly control the spatial pattern of element content or production of S. alterniflora between these marshes. Elevated salinity likely limits the nitrogen uptake capability of S. alterniflora in the high marsh, which, in turn, controls leaf tissue nitrogen content of plants within individual sites. Low substrate redox potential may control the spatial pattern of nitrogen uptake between the different-age marsh sites, loading to more favorable growing conditions at the low stations of the young marsh sites where values of tissue nitrogen and production are highest. Tissue phosphorus did not differ between, or within the marsh sites. The result of a fertilization experiment suggest that nitrogen, and not phosphorus, is the primary limiting nutrient in this sytem. This indicates that nutrient limitation and other stresses work in conjunction to control tissue element content and macrophyte production at these marsh sites. Spatial variability of factors that control leaf tissue nitrogen and production is likely related to topography and grain size of an individual marsh, which is a function of marsh age. Most studies in different-age marshes have compared transplanted marshes to older, natural marshes. This work is one of few studies comparing developing and mature natural, marshes on barrier islands.  相似文献   

19.
Salt marsh ecosystems provide many critical ecological functions, yet they are subject to considerable disturbance ranging from direct human alteration to increased inundation due to climate change. We assessed emergent salt marsh plant characteristics in the Tuckerton Peninsula, a large expanse (~ 2000 ha) of highly inundated habitat along the southern New Jersey coast, USA. Key salt marsh plant parameters were monitored in the heavily grid-ditched northern segment, Open Marsh Water Management (OMWM) altered central segment, and the shoreline altered southern segment of the peninsula in the summer months of 2011 and 2013. Plant species composition and three metrics of abundance and structure (maximum canopy height, percent areal cover, and shoot density) were examined among marsh segments, along transects within segments, seasonally by month and between years. Despite seasonal or annual variability, the northern segment of the marsh differed in plant species composition from the central and southern segments. This difference was partly due to greater percent areal cover in the northern segment of upper marsh species such as Spartina patens and Distichlis spicata. S. patens also exhibited higher shoot densities in the northern segment than the central segment. Despite the higher abundance of upper marsh species, marsh surface elevations were lower in the northern segment than in the central or southern segments, suggesting the influence of altered hydrology due to human activities. Understanding current variation in the emergent salt marsh vegetation along the peninsula will help inform future habitat change in other coastal wetlands of New Jersey and the mid-Atlantic region subject to natural and anthropogenic drivers.  相似文献   

20.
Rates of sea level rise associated with climate change are predicted to increase in the future, potentially altering ecosystems at all ecological levels. Sea level rise can increase the extent of brackish water intrusion into freshwater ecosystems, which in turn can affect the structure and function of resident microbial communities. In this study, we performed a year-long mesocosm experiment using intact tidal freshwater marsh sediment cores to examine the effect of a 5-part per thousand (ppt) salinity increase on the diversity and community composition of sulfate-reducing prokaryotes. We used a clone library approach to examine the dsrA gene, which encodes an important catalytic enzyme in sulfate reduction. Our results indicate that tidal freshwater marshes contain extremely diverse communities of sulfate-reducing bacteria. Members of these communities were, on average, only 71 % similar to known cultured sulfate reducers and 81 % similar to previously sequenced environmental clones. Salinity and associated increases in sulfate availability did not significantly affect the diversity or community composition of sulfate-reducing prokaryotes. However, carbon quality and quantity, which correlated with depth, were found to be the strongest drivers of sulfate-reducing community structure. Our study demonstrates that the sulfate-reducing community in tidal freshwater marsh sediments appears resistant to increased salinity in the face of sea level rise. Additionally, the microorganisms that comprise this sulfate-reducing community appear to be unique to tidal freshwater marsh sediments and may represent novel lineages of previously undescribed sulfate reducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号