首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
ABSTRACT All the Mesozoic and Cenozoic volcanic rocks of the Central Andes (from southern Ecuador to central Chile), except Recent ones, have been affected by episodes of regional metamorphism, without change in texture and structure. The metamorphism, which ranges from low zeolite to greenschist facies, can be classified as burial metamorphism because there is an overall increase in metamorphic grade with stratigraphic depth in the individual volcanic sequences separated by regional unconformities. Some sequences display metamorphic patterns transitional to ocean-floor and to geothermal field types, reflecting variations along and across the Andes in tectonic setting and thermal gradients. Volcanism was closely followed by metamorphism during each cycle characterizing the geological history of the Central Andes. The episodic nature of the metamorphism has led to breaks in metamorphic grade at regional unconformities and repetition of facies series, where strata of higher grade may even overlie those of lower grade. The existence of permeability-controlled distribution patterns of secondary minerals within individual flows shows that gradients of chemical activity, rate of reaction and Pfluid were acting, in addition to temperature and P,tot overall gradients, during the regional metamorphism. The alteration is accompanied by chemical changes and disturbances of the K-Ar and Rb-Sr isotope systems. Similarities between Mesozoic facies series in the western and eastern flanks of the Andes are consistent with a mechanism of ensialic spreading-subsidence.  相似文献   

2.
A field, petrologic and stable isotopic investigation of the marbles and calc-silicates of the 1.15 b.y. Valley Spring Gneiss documents the dilution of internally evolved CO2-rich fluids by externally derived aqueous fluids introduced along channelways. Reaction textures within calcsilicates record the evolution through time of initially CO2-rich fluids toward increasingly more aqueous compositions. Assemblage zonations within calc-silicates require equilibration within local gradients of the mole fraction of CO2 in the fluid, and suggest that the infiltration of aqueous fluids was largely channelized along more permeable lithologies. Localized depletions in 13C and 18O corroborate petrologic evidence for channelized infiltration. Isotopic compositions reflect both devolatilization and the introduction of low- 18O fluids; estimated minimum oxygen-equivalent fluid-to-rock ratios are near unity. Both mineralogical and stable isotopic systematics document the essential role of infiltration in driving decarbonation reactions during calc-silicate formation. The calc-silicate assemblages which equilibrated with fluids of the lowest mole fraction of CO2 record isotopic exchange equilibrium with fluids of 18O typical of those derived from normal granites, as do the granitic aplites and pegmatites which transect most calcsilicate occurrences. Thus the infiltrating fluids are believed to be genetically linked to the intrusion of a suite of granitic plutons emplaced after the peak of regional metamorphism.  相似文献   

3.
Hydrothermal investigation of the bulk composition CaO·Al2O3·4SiO2 + excess H2O has been conducted using conventional techniques over the temperature range 200–500° C and 500–5,000 bars P fluid. The fully ordered wairakite was synthesized unequivocally in the laboratory, probably for the first time.The gradual, sluggish and continuous transformation from disordered to ordered wairakite evidently accounts for failure by previous investigators to synthesize ordered wairakite in runs of week-long duration. The dehydration of metastable disordered wairakite to metastable hexagonal anorthite, quartz and H2O has been determined; this reaction takes place at temperatures exceeding 400° C, even at fluid pressures of 500 bars or less. The upper P fluid-T boundary of the disordered phase is equivalent to the maximum temperature curve of synthetic wairakite presented by previous investigators. The hydrothermal breakdown of natural wairakite above its stability limit appears to be a very slow process.The equilibrium dehydration of wairakite to anorthite, quartz and H2O occurs at 330±5° C at 500 bars, 348±5° C at 1,000 bars, 372±5° C at 2,000 bars and 385±5° C at 3,000 bars. Where fluid pressure equals total pressure, the thermal stability range of wairakite is about 100° C wide. At lower temperatures wairakite reacts with H2O to form laumontite. Reconnaissance experiments dealing with the effect of CO2 on stabilities of calcium zeolites suggest that wairakite or laumontite may be replaced by the assemblage calcite + montmorillonite in the presence of a CO2-bearing fluid phase.The determined P fluid -T field of wairakite is compatible with field observations in some metamorphic terrains where it is related to the shallow emplacement of granitic magma and with direct pressure-temperature measurements in certain active geothermal areas. Under inferred conditions of higher CO2/H2O ratios, essentially unmetamorphosed rocks grade directly into those characteristic of the greenschist facies; moderately high values of CO2 in carbonate-bearing rocks result in the downgrade extension of the greenschist facies at the expense of zeolite-bearing assemblages.  相似文献   

4.
We present a finite-element study of stress perturbation in evolving compressive and extensional strike-slip fault bridges. The results are compared with a fracture study of a compressive bridge at St Donats, UK. Horizontally interbedded calcareous mudstone and bioclastic calcilutite at St Donats have a distinct vertical permeability anisotropy. This sedimentary sequence behaves as a set of horizontal aquifers. The fluid flow in these aquifers is sensitive to mean stress gradients. Paleostress analysis of field fracture data, verified by finite-element modelling, indicates a rotation of σ1 towards parallelism with boundary faults inside the growing compressive bridge. Boundary faults and bridge faults recorded numerous fluid flow events. The modelled mean stress pattern shows a regional maximum within the bridge and local maxima/minima pairs at boundary fault tips.Finite-element modelling of an extensional bridge indicates that σ3 rotates towards parallelism with boundary faults. The mean stress pattern is similar to the pattern in compressive bridge but with maxima and minima locations interchanged. The stress patterns are reestablished by each stress build-up preceding the rupturation of the boundary faults throughout the development stages of strike-slip fault bridges. Mean stress gradients developed pre-failure control the fluid flow in fractures of the strike-slip fault system at and after the end of each stress build-up and the fluid flow in boundary faults post-failure. Fracture reactivation and new fracture generation within an evolving bridge is a process consisting of multiple successive events that retain the storage capacity of the bridge. Rupture and sealing of the main bounding-faults is a step-wise process that opens and closes fluid conduits between areas with different pressures.  相似文献   

5.
We present new partition coefficients for various trace elements including Cl between olivine, pyroxenes, amphibole and coexisting chlorine-bearing aqueous fluid in a series of high-pressure experiments at 2 GPa between 900 and 1,300 °C in natural and synthetic systems. Diamond aggregates were added to the experimental capsule set-up in order to separate the fluid from the solid residue and enable in situ analysis of the quenched solute by LA–ICP–MS. The chlorine and fluorine contents in mantle minerals were measured by electron microprobe, and the nature of OH defects was investigated by infrared spectroscopy. Furthermore, a fluorine-rich olivine from one selected sample was investigated by TEM. Results reveal average Cl concentrations in olivine and pyroxenes around 20 ppm and up to 900 ppm F in olivine, making olivine an important repository of halogens in the mantle. Chlorine is always incompatible with Cl partition coefficients D Cl olivine/fluid varying between 10?5 and 10?3, whereas D Cl orthopyroxene/fluid and D Cl clinopyroxene/fluid are ~10?4 and D Cl amphibole/fluid is ~5 × 10?3. Furthermore, partitioning results for incompatible trace element show that compatibilities of trace elements are generally ordered as D amph/fluid ≈ D cpx/fluid > D opx/fluid > D ol/fluid but that D mineral/fluid for Li and P is very similar for all observed silicate phases. Infrared spectra of olivine synthesized in a F-free Ti-bearing system show absorption bands at 3,525 and ~3,570 cm?1. In F ± TiO2-bearing systems, additional absorption bands appear at ~3,535, ~3,595, 3,640 and 3,670 cm?1. Absorption bands at ~3,530 and ~3,570 cm?1, previously assigned to humite-like point defects, profit from low synthesis temperatures and the presence of F. The presence of planar defects could not be proved by TEM investigations, but dislocations in the olivine lattice were observed and are suggested to be an important site for halogen incorporation in olivine.  相似文献   

6.
The eclogite-facies metasedimentary rocks in the Münchberg gneiss complex (T=630±30° C/P17–24 kbar) locally contain CO2–N2-rich fluid inclusions of extremely low molar volumes (32 cm3/mol) in quartz. These fluid compositions are mainly found in rocks intercalated with calcsilicate bands. Densities were determined from low-temperature phase transitions like stable or metastable homogenization (L+VL), partial homogenization (S+L+VS+L) and the transition S+LL (L = liquid, V = vapour, S = solid). The high fluid densities are in agreement with eclogite-facies pressure and temperature and subsequent amphibolite facies. CO2–N2 inclusions were not observed in adjacent eclogites nor in non-calcareous metasediments. These rock types contain predominantly H2O-rich inclusions correlating with amphibolite-facies conditions. The variation of fluid composition with lithological differences indicates local fluid gradients and speaks against a pervasive fluid flow during eclogite-facies metamorphism.  相似文献   

7.
The reaction stilbite=laumontite+3 quartz+3 H2O was experimentally studied using conventional hydrothermal techniques employing mineral mixtures consisting of reactants and products in 91 and 19 ratios. Equilibrium was demonstrated; the univariant curve passes through about 170° C and 2000 bars, 185°±10° C and 3000 bars, about 185° C and 4000 bars, and 183°±10° C at 5000 bars P fluid. These results combined with published equilibria for analcime, laumontite, wairakite and prehnite permit delineation of the P-T conditions for the zeolite and prehnite-pumpellyite facies metamorphism in the Tanzawa Mountains, Japan.  相似文献   

8.
Synkinematic quartz veins are ubiquitous in the shear zone separating the Veleta unit from the Calar Alto unit in the internal part of the Betic Cordilleras. They have been studied with respect to quartz c-axis fabrics, microstructures and fluid inclusions. Veins were probably generated during syn-metamorphic stacking of the units at P = 500 – 600 MPa and T = 400 – 500°C. Quartz displays two groups of microstructures in the shear zone: (1) older coarse-grained mosaics (CGM) resulting from exaggerated grain growth; and (2) younger fine-grained mosaics (FGM) developed at the expense of the former. The fine-grained mosaics show polygonal granoblastic and elongate mosaic microstructures in general, with ribbon microstructures often found near the boundary of the units. Fluids contained in secondary inclusions vary from high salinity brines to different types of CO2—brine mixtures and low density CO2 fluids. Differences in composition and P-T trapping conditions are indicated for the different types of inclusions. Some fluid inclusions are older than the FGM, whereas others are younger, thus constraining the P- T conditions at which the two microstructural events took place. Fluid inclusion evidence suggests conditions of Pfluid > 170 MPa and T 370–430°C for the CGM and Pfluid 20–80 MPa and T > 340°C for the FGM.The quartz c-axis fabrics dealt with here correspond to the second recrystallization event, as little evidence of older fabrics is preserved in the shear zone. C-axis patterns vary across the shear zone from slightly asymmetrical type I crossed girdles in the hanging wall and footwall to more asymmetrical crossed girdles at the boundary of the units. This indicates a correlative increase in the magnitude of the heterogeneous shear strain in the same direction. Most of the deformation is concentrated at the top of the Veleta unit. The sense of movement is top to the west, in agreement with other kinematic markers.The quartz c-axis fabrics resulted from dynamic recrystallization during simple shear. The retrograde P-T path inferred from fluid inclusion analysis, along with other geological and geochronological evidence, indicates that this deformation is coeval with a reduction in the crustal overburden.Geochronological and stratigraphic data show that the proposed Dos Picos extensional detachment, separating the Calar Alto and Veleta units, took place during the early Miocene, synchronous with the intense thinning of the Nevado-Filábride Complex and of the whole continental crust underlying the Alborán Basin.  相似文献   

9.
In modelling atmospheric flows the baroclinic instability of the flow in a differentially heated rotating annulus plays a central role. This paper deals with an experimental study using LDV and flow visualization techniques. Usually the temperature difference,T, was kept fixed while the angular velocity,, was varied. On crossing the stability boundary, the primary bifurcation, the basic flow gives way to a baroclinic wave flow. For a given annulus geometry the wave number,m, of the first wave pattern was found to be uniquely defined byT. The measured critical values of, crit, agree reasonably well with those obtained by other authors. On increasing above crit the wave number changed, this process showing hysteresis. The situation might indicate secondary bifurcation phenomena. Flow visualization using aluminium particles shows surface flow details.This paper is dedicated to Prof. Dr. K. Gersten on the occasion of his 60th birthday  相似文献   

10.
The structure of H2O-saturated silicate melts, coexisting silicate-saturated aqueous solutions, and supercritical silicate liquids in the system Na2O·4SiO2–H2O has been characterized with the sample at high temperature and pressure in a hydrothermal diamond anvil cell (HDAC). Structural information was obtained with confocal microRaman and with FTIR microscopy. Fluids and melts were examined along pressure-temperature trajectories defined by the isochores of H2O at nominal densities, ρfluid, (from EOS of pure H2O) of 0.90 and 0.78 g/cm3. With ρfluid = 0.78 g/cm3, water-saturated melt and silicate-saturated aqueous fluid coexist to the highest temperature (800 °C) and pressure (677 MPa), whereas with ρfluid = 0.90 g/cm3, a homogeneous single-phase liquid phase exists through the temperature and pressure range (25–800 °C, 0.1–1033 MPa). Less than 5 vol% quartz precipitates near 650 °C in both experimental series, thus driving Na/Si-ratios of melt + fluid phase assemblages to higher values than that of the Na2O·4SiO2 starting material.Molecular H2O (H2O°) and structurally bonded OH groups were observed in coexisting melts and fluids as well as in supercritical liquids. Their OH/(H2O)-ratio is positively correlated with temperature. The OH/(H2O)° in melts is greater than in coexisting fluids. Structural units of Q3, Q2, Q1, and Q0 type are observed in all phases under all conditions. An expression of the form, 12Q3 + 13H2O2Q2 + 6Q1 + 4Q0, describes the equilibrium among those structural units. This equilibrium shifts to the right with increasing pressure and temperature with a ΔH of the reaction near 425 kJ/mol.  相似文献   

11.
Piles supporting transmission towers, offshore structures (such as wind turbines), or infrastructures in seismic areas are frequently subjected to either one-way or two-way cyclic lateral loadings. Relatively little attention, however, has been paid to compare and understand the effects of different loading regimes (one-way or two-way cycling) on lateral responses of piles in soft clay. For this reason, a series of field tests in soft clay are carried out to compare one-way and two-way cyclic responses of single piles and of jet-grouting reinforced piles. The field tests reveal that the single pile subjected to two-way cycling experiences much more rapid degradation in lateral stiffness and capacity, but accumulates much smaller residual pile deflection (δ p), than the single pile under one-way cycling. This is because the reverse part of the two-way cycling also generates plastic strain, causing additional softening and strength reduction in the soil surrounding the pile. After each cycling, non-zero bending moment (i.e. locked in moment, or M L) is retained in the single piles, and the M L increases with the δ p. The one-way cycling leads to two times larger M L than the two-way cycling, as it causes greater δ p. The maximum M L in the pile after one-way cycling can be up to 40% of the maximum bending moment induced during the previous cyclic loading stage. After application of jet-grouting surrounding the upper part of the single pile, it greatly reduces degradation of lateral pile stiffness, accumulation of δ p and therefore development of M L. Compared to the field measurements, the API (API RP 2A-WSD, recommended practice for planning, designing, and constructing fixed offshore platform-working stress design, 21st edn. API, Washington, 2000) code underestimates the lateral stiffness of the pile under one-way cycling, while overestimates that of the pile under two-way cycling, leading to a non-conservative prediction of bending moment in the latter pile.  相似文献   

12.
13.
The interbedding of pelite and calc-schist in part of the contact aureole of a Devonian (biotite K-Ar age 346±4 Ma) granite pluton that straddles the Quebec-Vermont border offers an opportunity to compare metamorphic conditions prevailing in both rock types, and to test for internal consistency among several different geothermometers and geobarometers.Microprobe analyses and recent thermodynamic data are used with simple activity-composition models to estimate P-T-X fluid conditions near the sillimanite zone. Calculations yield the following results: P=2 to 3 kb, and T =400° to 600° C in the inner one kilometre of the aureole; was around 0.8. Estimates are based on the calc-silicate isobaric invariant assemblages tremolite-K-feldspar-plagioclase-clinozoisite-phlogopite-calcite-quartz and diopside-tremolite-plagiolase-clinozoisite-calcite-quartz, and the paragonite-andalusite-sillimanite-albite-quartz equilibrium. The solid-solid reaction phlogopite+2 diopside + 4 quartz=tremolite+K-feldspar in the calc-schist (combined with the andalusite-sillimanite equilibrium), and phase relations in the granite yield apparently inconsistent results.The implied 6 to 10 km of cover at the time of intrusion may have been provided by subsequently eroded thrust sheets.  相似文献   

14.
《Applied Geochemistry》1994,9(6):609-626
The Saint-Salvy vein-hosted Zn (+Ge) deposit occurs in an E–W fault system which flanks the southern margin of the late Variscan Sidobre granite, and cross-cuts Cambrian black shales of the Palaeozoic basement. Comprehensive mineralogical and geochemical studies of vein samples have revealed four mineralizing events (M1–M4) related to late and post-Variscan tectonic events. A further late-stage event may be related to weathering.M1 (=skarn deposits) and M2 (=patchily mineralized quartz veinlets) are associated with granite emplacement. Quartz contains low salinity, H2OCO2(NaCl)-dominated fluids(⩽6wt% NaCl equiv.) of relatively high temperature (300–580°C), trapped under moderate to high pressure. Estimated M1 fluid δD and calculated fluidδ18O plot within the metamorphic water field. There appears to be no involvement of magmatic fluids.By contrast, M3 (= barren quartz) and M4 (= zinciferous economic mineralization) stages have H2OCO2NaClCaCl2 fluid inclusions with high salinities (23–25 wt% NaCl equiv.) and low temperatures(∼ 80–140°C), which were trapped under low-pressure conditions. The high salinity and NaCl + CaCl2 content of both M3 and M4 indicates that their parent fluids leached evaporitic salts. M3 fluids are meteoric water dominated, falling close to the meteoric water line (δD andδ18O averaging −64 and −8‰, respectively). M4 fluids have highly distinctive δD averaging −101‰, and calculated fluidδ18O varying from−1.2to+7.1‰. The unusually low δD composition of M4 suggests the involvement of “organic” fluids, in which H is derived directly or indirectly from organic matter. The relatively highδ18O of M4 fluids indicates that considerable isotopic exchange with sedimentary material took place, displacing theδ18O from the meteoric water line. The data imply interaction of meteoric waters with evaporite and hydrocarbon-bearing sedimentary sequences, most probably the adjacent Aquitain Basin.The main economic mineralization (M4 stage) took place during a tensional event, probably coincident with the Lias-Dogger transition.Calculatedδ34SH2S of M4 sulphide(+5.4to+8.2‰) is almost identical toδ34S of local Cambrian sulphides(+4.7to+9.4‰) suggesting a genetic link. Abundant siderite associated with M4 sphalerite hasδ13C ranging from−2.6to−4.4‰ indicating that carbon was sourced from sedimentary carbonate mobilized by, or equilibrated with the hydrothermal fluid.Late-stage sulphides exhibit extraordinary and highly distinctiveδ34S. Sphalerite has extremely low δ34S(−42.5to−50.5‰), whereas pyrite has an extraordinary large range from−33.2‰to+74.3‰. Closed system sulphate reduction is held to be responsible for the extremely highδ34S: whereas more open system reduction produces the very low values. The coincidence of isotopically lowδ13C(−7.6to−11.9‰) for co-genetic calcite suggests the involvement of organic matter in the reduction process.  相似文献   

15.
Dikes of the eastern Troodos ophiolite of Cyprus intruded at slow ocean-spreading axes with dips ranging up to 15° from vertical and with bimodal strikes (now NE–SW and N–S due to post-88 Ma sinistral microplate rotation). Varied dike orientations may represent local stress fields during dike-crack propagation but do not influence the spatial-distributions or orientation-distributions of dikes' magnetic fabrics, nor of their palaeomagnetic signals. Anisotropy of magnetic susceptibility (AMS) integrates mineral orientation-distributions from each of 1289 specimens sampled from dikes at 356 sites over 400 km2 in the eastern Troodos ophiolite of Cyprus. In 90% of dikes, AMS fabrics define a foliation (kMAXkINT) parallel to dike walls and a lineation (kMAX) that varies regionally and systematically. Magma-flow alignment of accessory magnetite controls the AMS with a subordinate contribution from the mafic silicate matrix that is reduced in anisotropy by sea-floor metamorphism. Titanomagnetite has less influence on anisotropy. Occasionally, intermediate and minimum susceptibility axes are switched so as to be incompatible with the kinematically reasonable flow plane but maximum susceptibility (kMAX) still defines the magmatic flow axis. Such blended subfabrics of kinematically compatible mafic-silicate and misaligned multidomain magnetite subfabrics; are rare. Areas of steep magma flow (kMAX plunge ≥ 70°) and of shallow magma-flow alternate in a systematic and gradual spatial pattern. Foci of steep flow were spaced 4 km parallel to the spreading axes and 6 km perpendicular to the spreading axes. Ridge-parallel separation of steep flow suggest the spacing of magma-feeders to the dikes whereas ridge-perpendicular spacing of 6 km at a spreading rate of 50 mm/a implies the magma sources may have been active for 240 Ka. The magma feeders feeding dikes may have been ≤ 2 km in diameter. Stable paleomagnetic vectors, in some cases verified by reversal tests, are retained by magnetite and titanomagnetite. In all specimens, the stable components were isolated by three cycles of low-temperature demagnetization (LTD) followed by ≥ 10 steps of incremental thermal demagnetization (TD). 47% of primary A-components [338.2 /+ 57.2 n = 207, α95 = 3.9; mean TUB = 397 ± 8 °C] are overprinted by a B-component [341.4 /+ 63.5, n = 96, α95 = 8.7; mean TUB = 182 ± 11 °C]. A- and B-components are ubiquitous and shared equally by the N–S and NE–SW striking dikes. A-component unblocking temperatures (TUB) are zoned subparallel to the fossil spreading axis. Their spatial pattern is consistent with chemical remagnetization at some certain off-axis distance determined by sea-floor spreading. A-components indicate less microplate rotation and more northerly palaeolatitudes that are consistent with metamorphic remagnetization after some spreading from the ridge-axis. Thus, their magnetizations are younger than those of the overlying volcanic sequence for which ChRMs are commonly reported as 274 /+ 33 (88 Ma).  相似文献   

16.
Late Carboniferous (Hercynian) tectonism in the Pyrenees generated extremely steep thermal gradients at 8–14 km depth in the continental crust, producing andalusite- and sillimanite-grade metamorphism and partial melting of Lower Paleozoic metasediments under water-rich conditions. At the same time, amphibolite- and granulitefacies basal gneisses were equilibrated under dryer conditions at pressures of 4 to 7 kbar (14–25 km depth), beneath these higher-level rocks. We present 95 new oxygen isotopic analyses of samples from the Agly, St. Barthelemy, Castillon and Trois Seigneurs Massifs, highlighting contrasting 18O/16O systematics at different structural levels in the Hercynian crust, here termed Zones 1, 2, and 3. The unmetamorphosed, fossiliferous, Paleozoic shales and carbonates of Zone 1 have typical sedimentary 18O values, mostly in the range +14 to +16 for the pelitic rocks and +20 to +25 for the carbonates. The metamorphosed equivalents of these rocks in Zone 2 all have strikingly uniform and much lower 18O values; the metapelites mostly have 18O=+10 to +12, and interlayered metacarbonates from the Trois Seigneurs Massif have 18O of about +12 to +14. Typically, the Zone 3 basal gneisses are isotopically heterogeneous with variable 18O values ranging from +6 in mafic lithologies to +22 in carbonate-rich lithologies. Steep gradients in 18O (as much as 10 per mil over a few cm) are preserved at the margins of some metacarbonate layers. These data indicate that the Zone 3 gneisses were infiltrated by much smaller volumes of metamorphic pore fluids than were the overlying Zone 2 rocks, and that circulation of surface-derived H2O (either seawater or formation waters, as evidenced by high D values) was mainly confined to the Paleozoic supracrustal sedimentary pile. This is compatible with an overall reduction of interconnected porosity with increasing depth, but perhaps even more important, the extensive partial melting at the base of Zone 2 may have produced a ductile, impermeable barrier to downward fluid penetration.Contribution No. 4287, Publication of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

17.
The relative stability of MgSiO3-ilmenite, MgSiO3-perovskite and (periclase+stishovite) assemblage phases as a function of the pressure is investigated with the periodic quantum mechanical ab initio HartreeFock program CRYSTAL. For the first time, the structure of MgSiO3-ilmenite is fully optimized. Basis set effects are explored. It turns out that relatively small basis sets reproduce correctly experimental geometries. However, larger basis sets (triple zeta quality, plus polarization d functions) are needed to yield significant thermochemical results. All contributions to the 0 K enthalpy are discussed. On the basis of the present highest level calculations, it appears that in the explored range of pressure (0P< 60=" gpa)=" the=" mineralogical=" assemblage=" periclase+stishovite=" has=" higher=" enthalpy=" than=">3-ilmenite or perovskite, and that ilmenite transforms to orthorhombic perovskite around to 29.4 GPa in good agreement with experimental data extrapolated down to 0 K.  相似文献   

18.
The paper contains the results of extensive single-point hot-wire and resistance-thermometer measurements in a wall jet on a heated concave wall with an external free stream. It is found that the turbulence in the inner (wall) and outer layers is sensitive to the distortion produced by the curved wall, broadly confirming current views of these effects. The effect on the turbulence of streamline curvature is stabilising in the outer layer, destabilising in the inner. Consequently the point of zero shear stress is closer to the point of maximum mean velocity than in flat and convex wall jets with which these new results are compared. The rate of growth is about 80% of that of the equivalent flat wall flow, and about half that of the convex wall flow. Changes in the wall shear stress and heat flux, which are increased relative to the flat wall flow, are significant but less than the changes in the corresponding convex wall flow. The greatest changes occur in the triple products.List of Symbols c f skin friction coefficient, 2 w / U M 2 - q 2 u 2 +v 2+w 2 - R radius of curvature of wall - r radius of curvature - St Stanton number,-q w /c p U M (T T w ) - T mean temperature - U streamwise mean velocity - U J initial wall-jet velocity - U 1 initial free-stream velocity - U 0 U M U PW - u, v, w fluctuating velocity components - x, y distances measured along and normal to the wall - y 0.5,y M wall-jet thicknesses defined in the text - y S ,y T wall-jet thicknesses defined in the text - T T W T - shear-layer thickness - 2 momentum thickness - temperature fluctuation - M point of maximum velocity - P potential flow - s point of zero shear stress - W wall value - free stream value  相似文献   

19.
Compressibility characteristics of soils   总被引:1,自引:0,他引:1  
Compressibility characteristics of soils forms one of the important soil parameters required in design considerations. Compression index, Cc, which is the slope of the linear portion of void ratio, e vs. logaritham of effective pressure p(log p) relationship, is extensively used for settlement determination. The e–log p is most often assumed to be linear at higher pressure range and hence Cc is taken as a constant. Both published experimental results as well as results obtained in this investigation reveal that the e vs. log p could be curved, concave upwards or concave downwards depending upon the soil plasticity characteristics and initial water content. Thus, assuming Cc to be constant may not be valid for many cases. In this paper, an alternate procedure is given to characterise the compressibility of a soil. Experimental results show that the deformation expressed as a percent of thickness of the soil, (strain) vs. effective pressure could be treated as a rectangular hyperbola and the behaviour could be characterised by two parameters, a and b. Characterising the compressibility behaviour with effective pressure by two parameters is better than a single parameter, Cc.  相似文献   

20.
Triangle based interpolation is introduced by an outline of two classical planar interpolation methods, viz. linear triangular facets and proximal polygons. These are shown to have opposite local bias. By applying cross products of triangles to obtain local gradients, a method designated slant-top proximal polygon interpolation is introduced that is intermediate between linear facets and polygonal interpolation in its local bias. This surface is not continuous, but, by extending and weighting the gradient planes, a C1 surface can be obtained. The gradients also allow a roughness index to be calculated for each data point in the set. This index is used to control the shape of a blending function that provides a weighted combination of the gradient planes and linear interpolation. This results in a curvilinear, C1,interpolation of the data set that is bounded by the linear interpolation and the weighted gradient planes and is tangent to the slant-top interpolation at the data points. These procedures may be applied to data with two, three, or four independent variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号