首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The implementation of the European Water Framework Directive (WFD) requires evaluation of the ecological status (ES) of benthic communities in coastal and transitional water systems, and the intercalibration of assessment methodologies therefore becomes a research challenge. Our aim was to test the suitability of applying the M-AMBI index to assess the status of the Eo estuary (northern coast of Spain). Our results showed that M-AMBI was influenced by the natural variability of benthic communities, and presented an apparent dependence on habitat characteristics. Consequently, the definition of homogeneous areas in transitional water systems should be based on the salinity gradient combined with other factors. To achieve an accurate ES assessment, habitat-specific reference conditions should then be defined prior to the application of M-AMBI; this necessitates dividing an estuary into several sections, which may be classified as different ESs. From this perspective, a novel approach to integrate habitat heterogeneity in a global ES assessment was tested.  相似文献   

2.
Macroalgae is a biological key element for the assessment of the ecological status in coastal waters in the frame of the European Water Framework Directive (WFD, 2000/60/EC). Here we propose a methodology for monitoring water quality based on the cartography of littoral and upper-sublittoral rocky-shore communities (CARLIT, in short). With the use of spatial databases, GIS, and available information about the value of rocky-shore communities as indicators of water quality, it is possible to obtain an environmental quality index representative of the ecological status of rocky coasts. This index, which completely fulfils the requirements of the WFD, is expressed as a ratio between the observed values in the sector of shore that is being assessed and the expected value in a reference condition zone with the same substrate and coastal morphology (Ecological Quality Ratio, EQR). The application of this index to the coast of Catalonia (North-Western Mediterranean) is presented.  相似文献   

3.
The assessment of the ecological status, as required by the Water Framework Directive (WFD), plays an important role in coastal zone management, but only a small number of ecological indices are applicable on rocky bottoms. In this study, we apply a previously defined ecological quality index based on the cartography of littoral and upper-sublittoral rocky-shore communities (CARLIT), based on the sensitivity of algae dominated communities to anthropogenic impacts along a moderate urban gradient. We also apply this index in four Marine Protected Areas (MPAs), proposed as reference sites at a regional scale. After comparing the outputs with water variables and other quality indices, we can affirm that (1) the CARLIT index is suitable to detect different kinds of anthropogenic pressures, that (2) the choice of proper reference sites is a focal point in the fulfilment of the WFD (Water Framework Directive) and that (3) historical data are important to define reference conditions and the degradation of ecological status.  相似文献   

4.
5.
The present study focused on the use of benthic invertebrate communities to assess the ecological quality of a Portuguese estuary characterized by strong seasonal changes and with eutrophication problems. Seasonal benthic samples were collected during a flood year and the methodology proposed by the WFD Portuguese group was used to classify benthic assemblages into five different quality classes. Factor analysis was applied to classify stations based on their physical-chemical status. Different classifications were obtained with different indices and among seasons and there was low agreement between indices and index-season interactions. Diversity indices were better correlated to eutrophication related variables than AMBI and ABC method. Predictable responses of benthic indices to anthropogenic stress symptoms were stronger during the dry period.  相似文献   

6.
The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of transitional and coastal waters; its final objective is to achieve at least 'good water status' for all waters, by 2015. The WFD requires Member States (MSs) to assess the Ecological Status (ES) of water bodies. This assessment will be based upon the status of the biological, hydromorphological and physico-chemical quality elements, by comparing data obtained from monitoring networks to reference (undisturbed) conditions, and then deriving an Ecological Quality Ratio (EQR). One of the biological quality elements to be considered is the benthic invertebrate component and some structural parameters (composition, diversity and disturbance-sensitive taxa) must be included in the ES assessment. Following these criteria, several approaches to benthic invertebrate assessment have been proposed by MSs. The WFD requires that these approaches are intercalibrated. This contribution describes the comparison of the different methodologies proposed by United Kingdom, Spain, Denmark and Norway. Results show a high consistency between the approaches, both with regard to determining the EQR and boundary settings for the ES.  相似文献   

7.
The most important objective within the European Water Framework Directive (WFD) is to achieve a ‘good ecological status’ (GES) for all waters, by 2015. Some methodologies have been developed for assessing GES within natural water bodies, in which the ecological status is a perceived or measured deviation from a reference condition. However, the WFD also consider ‘Heavily modified water bodies’ (HMWB) (a water body resulted from physical alterations by human activity, which substantially change its hydrogeomorphological character, e.g. a harbour). In implementing the WFD, environmental managers are required to assess the status of HMWBs in terms of achieving ‘Good Ecological Potential’ (GEP). This contribution defines and studies GEP from an ecological point of view, taking into account some ecological restoration principles. Finally, this contribution gives some guidance on how establish GEP, using as example a harbour within the North East Atlantic.  相似文献   

8.
The assessment of estuaries based on benthic communities is widely used to determine impacts caused by human pressure and is one of the required tools for the implementation of the European Water Framework Directive (WFD). Our study compared multimetric approaches (B-IBI and TICOR) to assess the benthic condition of three Portuguese estuaries (Mondego, Tejo, and Mira rivers) with different levels of natural and human induced stress. Benthic community condition was classified into quality status categories of the WFD and compared for consistency with a priori status categories based upon physical-chemical criteria. Both multimetric indices discriminated equally well between locations classified above or below the good status category but were unable to provide good separation between other quality classes (high/good, moderate, poor/bad). Metrics included in these indices are greatly affected by natural stress and we recommend the development of habitat-specific thresholds to increase the discriminatory ability of any benthic condition index.  相似文献   

9.
10.
A new multimetric MMI_PL index, which is based on the macroinvertebrate composition and combines six single key metrics, has already been implemented in Poland according to the requirements of the EU Water Framework Directive. The objectives of our survey were to assess the biological water quality using the new multimetric MMI_PL index in both reference and human-impacted streams, to analyze whether the values of the new multimetric index properly reflect the ecological status of the water in upland and mountain streams as well as to determine which environmental factors influence the distribution of benthic macroinvertebrates and the values of the metrics. The study was carried out from 2007 to 2010 in three Ecoregions that were established by the EU WFD. A total of 60 sampling sites: 36 reference sites that were situated in the headwaters of mountain streams at mid- and high-altitudes and 24, human-impacted sampling sites were selected. The benthic macroinvertebrate surveys were supported by both a hydromorphological and macrophyte assessment according to the River Habitat Survey (RHS) and to the Macrophyte Methods for Rivers. Canonical correspondence analysis (CCA) showed that the values of the Habitat Quality Assessment (HQA) index, conductivity, pH and altitude were the parameters most associated (statistically significant) with the distribution of benthic macroinvertebrate taxa and the values of the metrics in both the reference and human-impacted (impaired) sections of the streams in Ecoregions 9, 10 and 14. The new MMI_PL index was useful for biological water quality assessment and was also important for separating both the reference and impaired sections of streams. The MMI_PL index and some key metrics performed contrary to what was expected in relation to the reference high-altitude siliceous streams (the High Tatra Mts., Ecoregion 10). Low values of multimetric index and key metrics did not properly reflect their high ecological status and pristine character as reflected by the hydromorphological (RHS) and macrophyte surveys or the physical and chemical parameters of the water.  相似文献   

11.
The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of estuarine (transitional) and coastal waters, attempting to achieve good water status by 2015; this includes, within the assessment, biological and chemical elements. The European Commission has proposed a list of priority dangerous substances (including metals such as Cd, Hg, Ni and Pb), with the corresponding list of environmental quality standards (EQS), to assess chemical status, but only for waters. In this contribution, a long-term (1995–2007) dataset of transitional and coastal water and sediment trace elements concentrations, from the Basque Country (northern Spain), has been used to investigate the response of these systems to water treatment programmes. Moreover, the approach proposed in the WFD, for assessing water chemical status (the ‘one out, all out’ approach), is compared with the integration of water and sediment data, into a unique assessment. For this exercise, background levels are used as reference conditions, identifying the boundary between high and good chemical status. EQS are used as the boundary between good and moderate chemical status. This contribution reveals that the first approach can lead to misclassification, with the second approach representing the pattern shown by the long-term data trends. Finally, the management implications, using each approach are discussed.  相似文献   

12.
Fluvial geomorphology is rapidly becoming centrally involved in practical applications to support the agenda of sustainable river basin management. In the UK its principal contributions to date have primarily been in flood risk management and river restoration. There is a new impetus: the European Union's Water Framework and Habitats Directives require all rivers to be considered in terms of their ecological quality, defined partly in terms of ‘hydromorphology’. This paper focuses on the problematic definition of ‘natural’ hydromorphological quality for rivers, the assessment of departures from it, and the ecologically driven strategies for restoration that must be delivered by regulators under the EU Water Framework Directive (WFD). The Habitats Directive contains similar concepts under different labels. Currently available definitions of ‘natural’ or ‘reference’ conditions derive largely from a concept of ‘damage’, principally to channel morphology. Such definitions may, however, be too static to form sustainable strategies for management and regulation, but attract public support. Interdisciplinary knowledge remains scant; yet such knowledge is needed at a range of scales from catchment to microhabitat. The most important contribution of the interdisciplinary R&D effort needed to supply management tools to regulators of the WFD and Habitats regulations is to interpret the physical habitat contribution to biodiversity conservation, in terms of ‘good ecological quality’ in rivers, and the ‘hydromorphological’ component of this quality. Contributions from ‘indigenous knowledge’, through public participation, are important but often understated in this effort to drive the ‘fluvial hydrosystem’ back to spontaneous, affordable, sustainable self‐regulation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The need to assess the environmental status of marine and coastal waters according to the EU Water Framework Directive (WFD) encouraged the design of specific biotic indices to evaluate the response of benthic communities to human-induced changes in water quality. In the present study three of these indices, the traditional Shannon Wiener Index (H') and the more recently published AMBI (AZTI' Marine Biotic Index) and BQI (Benthic Quality Index), were tested along a salinity gradient in the southern Baltic Sea. The comparison of the three indices demonstrates that in the southern Baltic Sea the ecological quality (EcoQ) classification based on macrozoobenthic communities as indicator greatly depends on the biotic index chosen. We found a significant positive relation between species number, H', BQI and salinity resulting in EcoQ status of "Bad", "Poor" or "Moderate" in areas with a salinity value below 10 psu. The AMBI was less dependent on salinity but appear to partly overestimate the EcoQ status. Presently none of these biotic indices appear to be adjusted for application in a gradient system as given in the southern Baltic Sea. A potential approach describing how to overcome this limitation is discussed.  相似文献   

14.
The European Water Framework Directive will have instituted the concept of Ecological Quality Status (EQS) as a way to assess the biological quality of water masses. The EQS will be based mainly upon the composition of the different biological compartments in the ecosystem specially the benthos as compared to certain reference sites. Such management tools are already well established for freshwater (i.e. biotic indices), but not for coastal and estuarine (i.e. transitional) waters. In the framework of the Seine-Aval programme a workshop on benthic indicators was organized at Wimereux (France) in June 2005. The aim of this workshop and this paper is (1) to present the experiences of the Seine Aval researchers, and the French scientific approaches to benthic indicators, with those international experiences and approaches that have been published or are under development; and (2) to examine the existing benthic tools and their possible use in the characterization of the state of estuarine ecosystems. The debate during the workshop and the numerous recently published on the WFD are discussed in term of the implementation of the WFD in transitional water bodies using benthic indicators and indices. Some proposals for the future underline the needs to re-examine and adapt the different index thresholds, to take into account physical disturbances, to inventory the existing conditions vs reference conditions and to be as pragmatic as possible in using the WFD in transitional waters.  相似文献   

15.
16.
A previously presented objective method to calculate each species sensitivity to disturbance is here slightly modified and implemented in the Benthic Quality Index (BQI) for marine benthic invertebrates. A framework for assessment of water bodies based on multi-site BQI-values is also presented, where a certain variation of BQI-values is allowed to cover the heterogeneity within each water body. The 20th percentile, using bootstrapping, from the available sites’ BQI-values is compared with the status boundaries for quality assessment. The reliability of the assessment depends on the background information available for the boundary setting as well as the number of sampling sites included in the assessment. Agreement between time series of quality assessments in areas with known changes in anthropogenic disturbances is encouraging. Problems associated with water body assessment based on few or no samples, as well as multiple sampling occasions during the 6-yr WFD cycle are discussed.  相似文献   

17.
A central aspect of the Water Framework Directive 2000/60/EC addressed to Member Countries is to proceed to type-specific ecological assessment and classification by establishing typology systems. Sixty-four permanent stream sites distributed throughout mainland Greece and islands were assessed with macroinvertebrate indicators to evaluate their ecological quality. Local and catchment scale parameters were determined and recorded to obtain an integrated assessment of the main factors affecting stream integrity and macroinvertebrate communities. Twenty-three sites were classified as reference or good status in terms of biological, chemical and hydromorphological quality with the use of various metrics. Multivariate statistical techniques were performed (MDS, BIOENV, correlation analysis and PCA) to investigate the main environmental factors structuring benthic macroinvertebrate communities and to select candidate environmental variables for establishing a biotic typology for Hellenic rivers. The results revealed relatively distinct macroinvertebrate communities within defined abiotic zones of the country. Assemblages of macroinvertebrate fauna were most strongly associated to differences in geographical position, altitude, slope, catchment area, current velocity, conductivity and water temperature. In view of the lack of sufficient data at the country level on the three last variables and after considering cause-effect relationships between large scale variables and the latter, it has been demonstrated that a number of catchment scale variables could be used as robust surrogates.  相似文献   

18.
A new assessment system for macrophytes and phytobenthos in German rivers meeting the requirements of the Water Framework Directive (WFD) of the European Community is described. Biocoenotic types based on biological, chemical and hydromorphological data from over 200 river sites covering the main ecoregions, hydromorphological stream types and degradation forms have been defined. For developing a classification system the quality element macrophytes and phytobenthos was divided into three components: macrophytes, benthic diatoms and remaining phytobenthos. For macrophytes seven types including one subtype, for benthic diatoms 14 types including three subtypes and for the remaining phytobenthos five river types were identified. The benthic vegetation at reference condition was described for most of the river types. Degradation is characterised as deviation in benthic vegetation species composition and abundance from the reference biocoenosis. For classification in five ecological status classes, several metrics were developed and used in combination with existing indices. For some of the described river types additional investigations are necessary before a classification system can be developed.  相似文献   

19.
In recent studies, several benthic biological indices were developed or used to assess the ecological quality status of marine environments. In the present study the seasonal variability of several univariate and multimetric indices was studied on a monthly scale (September 2000 until May 2002) in different areas of the North Sea such as the German Bight, the Oyster Ground and the Dogger Bank. The stations were chosen to reflect a gradient in the hydrographic regime, temperature and organic matter supply. The seasonal variability was highest for the univariate indices such as the Shannon–Wiener Index and the Hurlbert Index. Thus, due to sensitivity to recruitment the corresponding ecological status ranged from ‘good’ to ‘poor’ depending on the season. For the multimetric indices such as the AMBI or the BQI the seasonal variability and the corresponding ecological status were low. The results are discussed concerning possible consequences for ecological quality assessment especially related to the Water Framework Directive (WFD).  相似文献   

20.
The main goal of the EU Water Framework Directive (WFD) is to achieve good ecological status across European surface waters by 2015 and as such, it offers the opportunity and thus the challenge to improve the protection of our coastal systems. It is the main example for Europe's increasing desire to conserve aquatic ecosystems. Ironically, since c. 1975 the increasing adoption of EU directives has been accompanied by a decreasing interest of, for example, the Dutch government to assess the quality of its coastal and marine ecosystems. The surveillance and monitoring started in NL in 1971 has declined since the 1980s resulting in a 35% reduction of sampling stations. Given this and interruptions the remaining data series is considered to be insufficient for purposes other than trend analysis and compliance. The Dutch marine managers have apparently chosen a minimal (cost-effective) approach despite the WFD implicitly requiring the incorporation of the system's 'ecological complexity' in indices used to evaluate the ecological status of highly variable systems such as transitional and coastal waters. These indices should include both the community structure and system functioning and to make this really cost-effective a new monitoring strategy is required with a tailor-made programme. Since the adoption of the WFD in 2000 and the launching of the European Marine Strategy in 2002 (and the recently proposed Marine Framework Directive) we suggest reviewing national monitoring programmes in order to integrate water quality monitoring and biological monitoring and change from 'station oriented monitoring' to 'basin or system oriented monitoring' in combination with specific 'cause-effect' studies for highly dynamic coastal systems. Progress will be made if the collected information is integrated and aggregated in valuable tools such as structure- and functioning-oriented computer simulation models and Decision Support Systems. The development of ecological indices integrating community structure and system functioning, such as in Ecological Network Analysis, are proposed to meet a cost-effective approach at the national level and full assessment of the ecosystem status at the EU level. The WFD offers the opportunity to re-consider and re-invest in environmental research and monitoring. Using examples from the Netherlands and, to a lesser extent, the United Kingdom, the present paper therefore reviews marine monitoring and marine environmental research in combination and in the light of such major policy initiatives such as the WFD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号