首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report an empirical determination of the probability density functions Pdata(r) of the number r of earthquakes in finite space–time windows for the California catalog for different space (5 × 5 to 50 × 50 km2) and time intervals (0.1 to 1000 days). The data can be represented by asymptotic power law tails together with several cross-overs reasonably explained by one of the most used reference model in seismology (ETAS), which assumes that each earthquake can trigger other earthquakes according to complex cascades. These results are useful to constrain the physics of earthquakes and to estimate the performance of forecasting models of seismicity.  相似文献   

2.
We have reinvestigated the mid-Cretaceous plume pulse in relation to paleo-oceanic plateaus from accretionary prisms in the circum-Pacific region, and we have correlated the Pacific superplume activity with catastrophic environmental changes since the Neoproterozoic. The Paleo-oceanic plateaus are dated at 75–150 Ma; they were generated in the Pacific superplume region and are preserved in accretionary prisms. The volcanic edifice composed of both modern and paleo-oceanic plateaus is up to 10.7 × 106 km2 in area and 19.1 × 107 km3 in volume. The degassing rate of CO2 (0.82 − 1.1 × 1018 mol/m.y.) suggests a significant impact on Cretaceous global warming. The synchronous occurrence of paleo-oceanic plateaus in accretionary complexes indicates that Pacific superplume pulse activities roughly coincided at the Permo-Triassic boundary and the Vendian–Cambrian boundary interval. The CO2 expelled by the Pacific superplume probably contributed to environmental catastrophes. The initiation of the Pacific superplume contributed to the snowball Earth event near the Vendian–Cambrian boundary; this was one of the most dramatic events in Earth's history. The scale of the Pacific superplume activity roughly corresponds to the scale of drastic environmental change.  相似文献   

3.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

4.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   

5.
Cantilever torque magnetometry is utilized widely in physics and material science for the determination of magnetic properties of thin films and semiconductors. Here, we report on its first application in rock magnetism, namely the determination of K1 and K2 of single crystal octahedra of natural magnetite. The design of cantilever magnetometers allows optimization for the specific research question at hand. For the present study, a cantilever magnetometer was used that enables measurement of samples with a volume up to 64 mm3. It can be inserted into an electromagnet with a maximum field of 2 T. The cantilever spring is suitable for torque values ranging from 7.5 × 10− 7 N·m to 5 × 10− 6 N·m. The torque is detected capacitively; the measured capacitance is converted into torque by using a calibrated feedback coil. The magnetometer allows in-situ rotation of the sample in both directions and is, therefore, also suitable to analyze rotational hysteresis effects.The evaluation of the magnetite anisotropy constants involved Fourier analysis of the torque signal on the magnetite crystals' (001) and (110) planes. The absolute anisotropy constant has been computed using the extrapolation-to-infinite-field method. The value of K1 at room temperature is determined at − 1.28 × 104 [J m− 3] (± 0.13, i.e. 10%) and that of K2 at − 2.8 × 103 [J m− 3] (± 0.1, i.e. 2%). These values concur with earlier determinations that could not provide an instrumental error, in contrast with this work.The cantilever magnetometer performs four times faster than other torque magnetometers used for rock magnetic studies. This makes the instrument also suitable for magnetic fabric analysis.  相似文献   

6.
The geomorphic origin and evolution of the tectonically unique interior highland of southern Africa, the Kalahari Plateau, and its flanking low-lying coastal planes, remain largely unresolved because of a lack of regional quantitative analyses of its uplift and erosion history. Here we focus on the southern Cape, South Africa and link onshore denudation, based on new apatite fission track thermochronology results, to offshore sediment accumulation, using abundant well data and a seismic reflection profile. We attempt to relate source and sink in order to resolve some first order issues concerning timing of the exhumation and development of the topographic features of southern Africa. The volume of sediment accumulated off South Africa's south coast is calculated using 173 wells and a seismic reflection profile. A total, uncompacted, sediment volume of 268,500 km3 accumulated off South Africa's south coasts since  136 Ma, in the Outeniqua and Southern Outeniqua Basins. Accumulation volumes and rates were highest in the early Cretaceous (48,800 × 104 km3 at  8150 km3/Ma from  136 to 130 Ma, and 57,500 × 104 km3 at 5750 km3/Ma from  130 to 120 Ma) and mid–late Cretaceous (83,700 × 104 km3 at 3200 km3/Ma from  93 to 67 Ma). Volumes and accumulation rates were lowest for the early–mid-Cretaceous (47,400 × 104 km3 at 1750 km3/Ma from  120 to 93 Ma) and the Cenozoic (31,200 × 104 km3 at 450 km3/Ma from  67 to 0 Ma). Although our analysis shows that the accumulated volume of offshore sediments does not match the calculated volume of onshore erosion, as quantified through apatite fission track thermochronology (e.g. Tinker, J.H., de Wit, M.J., Brown, R., 2008. Mesozoic exhumation of the 439 southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, doi: 10.1016/j.tecto.2007.10.009), the timing of increased sediment accumulation closely matches the timing of increased onshore denudation. This suggests that the greatest volumes of material were transported from source to sink during two distinct Cretaceous episodes, and that the processes driving onshore denudation decreased by an order of magnitude during the Cenozoic.  相似文献   

7.
Several methods were evaluated and compared for the estimation of pyrite oxidation rates (POR) in waste rock at Mine Doyon, Quebec, Canada. Methods based on data collected in situ, such as the interpretation of temperature and oxygen concentration profiles (TOP) measured in the waste rock pile and pyrite mass balance (PMB) on solid phase samples were compared with the oxygen consumption measurements (OCM) in closed chamber in the laboratory. A 1-D analytical solution to a gas and heat transport equation used temperature and oxygen profiles (TOP) measured in the pile for the preliminary POR estimates at a site close to the slope of the pile (Site 6) and in the core of the pile (Site 7). Resulting POR values were 1.1 × 10− 9 mol(O2) kg− 1 s− 1 and 1.0 × 10− 10 mol(O2) kg− 1 s− 1 for the slope site and the core site, respectively. Oxidation rates based on pyrite mass balance (PMB) calculations for solid samples were 2.21 × 10− 9 mol(O2) kg− 1 s− 1 and 2.03 × 10− 9 mol(O2) kg− 1 s− 1, respectively, for the same slope and core sites, but the difference between sites was within the error margin. The OCM measurements in the laboratory on fresh waste rock samples yielded higher POR values than field methods, with average oxidation rate of 6.7 × 10− 8 mol(O2) kg− 1 s− 1. However, the OCM results on weathered and decomposed material from the rock stockpile (average oxidation rate 3.4 × 10− 9 mol(O2) kg− 1 s− 1) were consistent with results from the field-based estimates. When POR values based on fresh material are excluded, the remaining POR values for all methods range from 1.0 × 10− 10 to 3.4 × 10− 9 mol(O2) kg− 1 s− 1. The lowest estimated value (1.0 × 10− 10 mol(O2) kg− 1 s− 1) was based on TOP estimates in the interior of the pile where oxygen transport was limited by diffusion from the surface. These results suggest that small-scale OCM laboratory experiments may provide relatively representative values of POR in the zones of waste rock piles in which oxygen transport is not dominated by diffusion.  相似文献   

8.
The Yenice–Gönen Fault (YGF) is one of the most important active tectonic structures in the Biga peninsula. On March 18, 1953, a destructive earthquake (Mw = 7.2) occurred on the YGF, which is considered to be a part of the southern branch of the North Anatolian Fault Zone (NAFZ). A 70 km-long dextral surface rupture formed during the Yenice–Gönen Earthquake (YGE).In this study, structural and palaeoseismological features of the YGF have been investigated. The YGF surface ruptures have been mapped and three trenches were excavated at Muratlar, Karaköy and Seyvan sites.According to the palaeoseismic interpretation and the results of 14C AMS dating, Seyvan trench shows that an earthquake of palaeoseismic age ca. 620 AD ruptured a different strand of the 1953 fault, producing rather significant surface rupture displacement, while there are indications that at least two older events occurred during the past millennia. Another set of trenches excavated near Gönen town (Muratlar village) revealed extensive liquefaction not only during the 1953 event, but also during a previous earthquake, dated at 1440 AD. The Karaköy trench shows no indications of recent reactivations.Based on the trenching results, we estimate a recurrence interval of 660 ± 160 years for large morphogenic earthquakes, creating linear surface ruptures. The maximum reported displacement during the 1953 earthquake was 4.2 m. Taking into account the palaeoseismologically determined earthquake recurrence interval and maximum displacement, slip-rate of the YGF has been calculated to be 6.3 mm/a, which is consistent with present-day velocities determined by GPS measurements. According to the geological investigations, cumulative displacement of the YGF is 2.3 km. This palaeoseismological study contributes to model the behaviour of large seismogenic faults in the Biga Peninsula.  相似文献   

9.
A novel one-step hydrothermal synthesis of 11 Å tobermorite, a cation exchanger, from a unique combination of waste materials is reported. 11 Å tobermorite was prepared from stoicheiometric quantities of cement bypass dust and waste container glass at 100 °C in water. The product also comprised 10 wt.% calcite and trace quartz as residual parent phases from the cement bypass dust. In a batch sorption study at 20 °C the uptakes of Cd2+ and Pb2+ by the waste-derived tobermorite product were found to be 171 mg g− 1 and 467 mg g− 1, respectively, and in both cases the removal process could be described using a simple pseudo-second-order rate model (k2 = 2.30 × 10− 5 g mg− 1 min− 1 and 5.09 × 10− 5 g mg− 1 min− 1, respectively). The sorption characteristics of the 11 Å tobermorite are compared with those of other waste-derived sorbents and potential applications are discussed.  相似文献   

10.
A robust satellite data analysis technique (RAT) has been recently proposed as a suitable tool for satellite TIR surveys in seismically active regions and already successfully tested in different cases of earthquakes (both high and medium–low magnitudes).In this paper, the efficiency and the potentialities of the RAT technique have been tested even when it is applied to a wide area with extremely variable topography, land coverage and climatic characteristics (the whole Indian subcontinent). Bhuj–Gujarat's earthquake (occurred on 26th January 2001, MS  7.9) has been considered as a test case in the validation phase, while a relatively unperturbed period (no earthquakes with MS ≥ 5, in the same region and in the same period) has been analyzed for confutation purposes. To this aim, 6 years of Meteosat-5 TIR observations have been processed for the characterization of the TIR signal behaviour at each specific observation time and location.The anomalous TIR values, detected by RAT, have been evaluated in terms of time–space persistence in order to establish the existence of actually significant anomalous transients. The results indicate that the studied area was affected by significant positive thermal anomalies which were identified, at different intensity levels, not far from the Gujarat coast (since 15th January, but with a clearer evidence on 22nd January) and near the epicentral area (mainly on 21st January). On 25th January (1 day before Gujarat's earthquake) significant TIR anomalies appear on the Northern Indian subcontinent, showing a remarkable coincidence with the principal tectonic lineaments of the region (thrust Himalayan boundary).On the other hand, the results of the confutation analysis indicate that no meaningful TIR anomalies appear in the absence of seismic events with MS ≥ 5.  相似文献   

11.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   

12.
Twenty-eight samples of peat, peaty lignites and lignites (of both matrix and xylite-rich lithotypes) and subbituminous coals have been physically activated by pyrolysis. The results show that the surface area of the activated coal samples increases substantially and the higher the carbon content of the samples the higher the surface area.The adsorption capacity of the activated coals for NO, SO2, C3H6 and a mixture of light hydrocarbons (CH4, C2H6, C3H8 and C4H10) at various temperatures was measured on selected samples. The result shows a positive correlation between the surface area and the gas adsorption. In contrast, the gas adsorption is inversely correlated with the temperature. The maximum recorded adsorption values are: NO = 8.22 × 10− 5 mol/g at 35 °C; SO2 = 38.65 × 10− 5 mol/g at 60 °C; C3H6 = 38.9 × 10− 5 mol/g at 35 °C; and light hydrocarbons = 19.24 × 10− 5 mol/g at 35 °C. Adsorption of C3H6 cannot be correlated with either NO or SO2. However, there is a significant positive correlation between NO and SO2 adsorptions. The long chain hydrocarbons are preferentially adsorbed on activated lignites as compared to the short chain hydrocarbons.The results also suggest a positive correlation between surface area and the content of telohuminite maceral sub-group above the level of 45%.  相似文献   

13.
The analysis of ULF geomagnetic field measured at Teoloyucan station (Central Mexico, 11′35.735W, 19 44′45.100N, 2280 m height) is presented in an intermediate (± 15 days) and short time scale (the day of the EQ occurrence) in relation to 7 major earthquakes occurred in Mexico in 1999–2001. Local changes in the fractal dynamics of the magnetic field are found to be important: a pronounced fall of the fractal index is frequently observed prior to the main shock. The study of the ULF resonant structure recently discovered in the frequencies fR1 = 10.2−11.1 mHz and fR2 = 13.6−14.5 mHz reveals changes in their character probably related to the processes of the earthquakes preparation. The success of the observation of the mentioned anomalies (specially the fractal index decrease) strongly depends on how close is the station from the epicenter, and what is the magnitude of the earthquake.  相似文献   

14.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

15.
Water injection experiments were performed in 1997, 2000 and 2003 at the 1800 m borehole near the fracture zone of the 1995 Hyogo-ken Nanbu earthquake. During these experiments, a contraction of about 10− 8–10− 7 was observed with three-component strainmeters at a bottom of the 800 m borehole, 70 m southwest of the 1800 m borehole. We estimated hydraulic properties of the fracture zone near the Nojima fault by using the strain data to investigate a healing of the fault during the postseismic stage. We calculated pore pressure changes due to the water injection using Darcy's equation and obtained strain changes due to the pore pressure changes as elastic deformations of the crust. The calculated strain changes have a nearly agreement with the observed strain changes. Hydraulic conductivity in 1997, 2000 and 2003 was determined to be 0.9 ± 0.2 × 10− 6, 0.8 ± 0.2 × 10− 6 and 0.4 ± 0.1 × 10− 6 m/s, respectively. The reduced hydraulic conductivities in 2000 and 2003 suggest that the fractures had been healing.  相似文献   

16.
176 vertical-component, short period observations from aftershocks of the Mw 7.7, 26 January, 2001 Kachchh earthquake are used to estimate seismic wave attenuation in western India using uniform and two layer models. The magnitudes (Mw) of the earthquakes are less than 4.5, with depths less than 46 km and hypocentral distances up to 110 km. The studied frequencies are between 1 and 30 Hz. Two seismic wave attenuation factors, intrinsic absorption (Qi− 1) and scattering attenuation (Qs− 1) are estimated using the Multiple Lapse Time Window method which compares time integrated seismic wave energies with synthetic coda wave envelopes for a multiple isotropic scattering model. We first assume spatial uniformity of Qi− 1, Qs− 1 and S wave velocity (β). A second approach extends the multiple scattering hypothesis to media consisting of several layers characterized by vertically varying scattering coefficient (g), intrinsic absorption strength (h), density of the media (ρ) and shear wave velocity structure. The predicted coda envelopes are computed using Monte Carlo simulation. Results show that, under the assumption of spatial uniformity, scattering attenuation is greater than intrinsic absorption only for the lowest frequency band (1 to 2 Hz), whereas intrinsic absorption is predominant in the attenuation process at higher frequencies (2 to 30 Hz). The values of Q obtained range from Qt = 118, Qi = 246 and Qs = 227 at 1.5 Hz to Qt ≈ 4000, Qi ≈ 4600 and Qs ≈ 33,300 at 28 Hz center frequencies, being Qt− 1 a measure of total attenuation. Results also show that Qi− 1, Qs− 1 and Qt− 1 decrease proportional to fν. Two rates of decay are clearly observed for the low (1 to 6 Hz) and high (6 to 30 Hz) frequency ranges. Values of ν are estimated as 2.07 ± 0.05 and 0.44 ± 0.09 for total attenuation, 1.52 ± 0.21 and 0.48 ± 0.09 for intrinsic absorption and 3.63 ± 0.07 and 0.06 ± 0.08 for scattering attenuation for the low and high frequency ranges, respectively. Despite the lower resolution in deriving the attenuation parameters for a two layered crust, we find that scattering attenuation is comparable to or smaller than the intrinsic absorption in the crust whereas intrinsic absorption dominates in the mantle. Also, for a crustal layer of thickness 42 km, intrinsic absorption and scattering estimates in the crust are lower and greater than those of the mantle, respectively.  相似文献   

17.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   

18.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

19.
Deformation models used to explain the triggering mechanism often assume pure elastic behaviour for the crust and upper mantle. In reality however, the mantle and possibly the lower crust behave viscoelastically, particularly over longer time scales. Consequently, the stress field of an earthquake is in general time-dependent. In addition, if the elastic stress increase were enough to trigger a later earthquake, this triggered event should occur instantaneously and not many years after the triggering event. Hence, it is appropriate to include inelastic behaviour when analysing stress transfer and earthquake interaction.In this work, we analyse a sequence of 10 magnitude Ms > 6.5 events along the North Anatolian Fault between 1939 and 1999 to study the evolution of the regional Coulomb stress field. We investigate the triggering of these events by stress transfer, taking viscoelastic relaxation into account. We evaluate the contribution of elastic stress changes, of post-seismic viscoelastic relaxation in the lower crust and mantle, and of steady tectonic loading to the total Coulomb stress field. We analyse the evolution of stress in the region under study, as well as on the rupture surfaces of the considered events and their epicentres. We study the state of the Coulomb stress field before the 1999 İzmit and Düzce earthquakes, as well as in the Marmara Sea region.In general, the Coulomb stress failure criterion offers a plausible explanation for the location of these events. However, we show that using a purely elastic model disregards an important part of the actual stress increase/decrease. In several cases, post-seismic relaxation effects are important and greater in magnitude than the stress changes due to steady tectonic loading. Consequently, viscoelastic relaxation should be considered in any study dealing with Coulomb stress changes.According to our study, and assuming that an important part of the rupture surface must be stressed for an earthquake to occur, the most likely value for the viscosity of the lower crust or mantle in this region is 5 · 1017–1018 Pa · s. Our results cannot rule out the possibility of other time-dependent processes involved in the triggering of the 1999 Düzce event. However, the stress increase due to viscoelastic relaxation brought 22% of the 1999 Düzce rupture area over the threshold value of Δσc ≥ 0.01 MPa (0.1 bar), and took the whole surface closer to failure by an average of 0.2 MPa. Finally, we argue that the Marmara Sea region is currently being loaded with positive Coulomb stresses at a much faster rate than would arise exclusively from steady tectonic loading on the North Anatolian Fault.  相似文献   

20.
A total of 240 three-component recordings from 80 rockbursts, which occurred in various coal mines in the Ostrava-Karviná Coal Basin (Czech Republic) between 1993 and 2005, was used to examine the decrease in maximum particle velocities ui (m/s) with a scaled distance of d = d/√E (m/√J) or d/3√E (m/3√J) and the rate of predominant frequencies of body waves. The energetic span of rockbursts was within the interval of E = 6.2 × 103 − 5.0 × 108 J, while calculated hypocentral distances d of four underground seismic stations varied from 0.6 to 7 km. The slopes b of regression straight lines for the maximum particle velocities ui (m/s) of P- and S-waves in the bilogarithmic scale correspond to the values of − 1.004, − 1.297, − 1.183 and − 1.527. The results of the linear regression are as follows:
Pmax-waves ui = 1.184 × 10− 4 × d− 1.004 (m/s) (square root scaling)
Pmax-waves ui = 3.055 × 10− 3 × d− 1.297 (m/s) (cube root scaling)
Smax-waves ui = 5.280 × 10− 4 × d− 1.183 (m/s) (square root scaling)
Smax-waves ui = 2.397 × 10− 2 × d− 1.527 (m/s) (cube root scaling).
The evaluation of the abovementioned dynamic parameters was based on seismic events data gathered in the database of the regional seismic array, and calculations were carried out either by using special programs applied as part of the automated data processing in the computation center, or by usual linear regression approaches. The aim of the detailed analysis of the maximum particle velocity and predominant frequencies was a) to set up input data from underground seismological observations for laboratory experiments dealing with the comparison of rock mass behaviour under modeled laboratory conditions simulating manifestation of rockbursts, and b) to incorporate particle velocity into the design of support in order to control damage and evident devastation of workings by rockbursts. The investigation of peak particle velocities was based on the recognition that they are the best criterion to assess vibration damage to surface structures and in mines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号