首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reviews changes in the development and peripheralized status of the Fijian island of Kadavu from a 20‐year perspective. A combination of microgeographic studies in three villages and a mesogeographical analysis show that the conditions of internal dependency found in Kadavu in the early 1980s had not changed much: the pattern of cash crop production and trade remained almost entirely dependent on the yaqona (Pacific kava) beverage crop; shipping services provided by core agents had not improved; the island had experienced significant outmigration; and government initiatives to change the trend were limited. These elements perpetuate a core–periphery structure in Fiji that hampers the development of a self‐sufficient periphery. For Kadavu villagers, however, the benefits derived from the continued form of non‐capitalist production afford them a certain degree of autonomy vis‐à‐vis the market economy, which might be to their advantage under the ongoing conditions of peripheralization.  相似文献   

2.
珊瑚礁岛屿淡水透镜体研究综述   总被引:2,自引:0,他引:2  
赵焕庭  王丽荣 《热带地理》2015,35(1):120-129
淡水透镜体是珊瑚礁岛屿上重要的地下淡水资源,对于满足人们的日常生活需要和维护珊瑚礁岛屿的生态系统非常关键。文章回顾了国内外珊瑚礁岛屿淡水透镜体的研究历程,介绍了它的理论和特征,综述了其发育和演化与岛屿的水文地质、气候、潮汐、地形和植被等的关系。另外,自然压力,诸如干旱、海水入侵、海平面升高和岛的机械侵蚀等,以及人为压力,如过多抽取淡水、污染、地形改变和海岸工程等,都对珊瑚礁岛屿淡水透镜体的稳定造成了威胁,对这类干扰方面的研究也有很多。文章还介绍了常用的淡水透镜体研究模型,包括物理模型、解析模型和数学模型,并对其在淡水透镜体中的研究应用作了概述。对中国珊瑚礁岛屿淡水透镜体的研究现状也作了介绍,研究涉及西沙群岛永兴岛珊瑚礁淡水透镜体的厚度、抽取地下水导致的倒锥现象和生物修复等方面。最后,文章对南海珊瑚礁岛屿淡水透镜体的研究作出展望,提出开展对南海其他珊瑚礁岛屿淡水透镜体的研究工作,以及如何使抽取的地下水除污并可供饮用。  相似文献   

3.
Fluvial processes, especially rates of floodplain accretion, are less well understood in the wet tropics than in other environments. In this study, the caesium-137 (137Cs) method was used to examine the recent historical sedimentation rate on the floodplain of the Wainimala River, in the basin of the Rewa River, the largest fluvial system in Fiji and the tropical South Pacific Islands. 137Cs activity in the floodplain stratigraphy showed a well-defined profile, with a clear peak at 115 cm depth. Our measured accretion rate of 3.2 cm year−1 over the last ca. 45 years exceeds rates recorded in humid regions elsewhere. This is explained by the high frequency of tropical cyclones near Fiji (40 since 1970) which can produce extreme rainfalls and large magnitude floods. Since the beginning of hydrological records, large overbank floods have occurred every 2 years on average at the study site. The biggest floods attained peak flows over 7000 m3 s−1, or six times the bankfull discharge. Concentrations of suspended sediments are very high (max. 200–500 g l−1), delivered mainly by channel bank erosion. In the future, climatic change in the tropical South Pacific region may be associated with greater tropical cyclone intensities, which will probably increase the size of floods in the Rewa Basin and rates of floodplain sedimentation.  相似文献   

4.
Two general approaches have been applied to understanding the fractal structure of fluvial topography: (1) deterministic, process-based models, and (2) stochastic partial differential equations (PDE). Deterministic models reproduce the fractal behavior of fluvial topography but have two limitations: they often underestimate the amount of lateral valley and ridge migration that occurs in nature, and the complexity has made it difficult to identify the precise origin of fractal behavior in fluvial landscapes. The simplicity of stochastic PDE models has made them useful for investigating fractal behavior, but they incorrectly suggest that fractal behavior is only possible with stochastic forcing. In this paper I investigate whether simplified, deterministic PDE models of landform evolution also exhibit fractal behavior and other features of complexity (i.e. deterministic chaos). These models are based on the KPZ equation, well known in the physics literature. This equation combines diffusion (i.e. hillslope processes) and nonlinear advection (i.e. bedrock or alluvial channel incision). Two models are considered: (1) a deterministic model with uniform erodibility and random initial topography, and (2) a deterministic model with random erodibility and uniform initial topography. Results illustrate that both of these deterministic models exhibit fractal behavior and deterministic chaos. In this context, chaotic behavior means that valley and ridge migration and nonlinear amplification of small perturbations in these models prevent an ideal steady state landscape from ever developing in the large-system limit. These results suggest that fractal structure and deterministic chaos are intrinsic features of the evolution of fluvial landforms, and that these features result from an inverse cascade of energy from small to large wavelengths in drainage basins. This inverse cascade differs from the direct cascade of three-dimensional turbulence in which energy flows from large to small wavelengths.  相似文献   

5.
The reclamation of Sagar island from the Sundarban mangrove wetlands of the western Ganga Brahmaputra delta was initiated in 1811. At present the island is almost wholly settled. The major natural environmental hazards (NEH) that affect the island are tropical cyclones, coastal erosion, tidal ingression and dunal encroachment. Human adjustments to these problems include acceptance, technological control, relocation, regulation and emergency measures. Seven different agencies manage the existing NEH-prevention projects of the island, often with little coordination. Important schemes managed by these agencies include coastal and interior embankments, mangrove plantations, storm refuges, resettlement projects and vegetation wind-breaks. Their efficiency ranges from excellent to very poor. Since a large outlay is inconceivable, the island's hazard prevention projects should mobilise existing resources in a more rational and coordinated manner. The long-term solution to the problems, however, lies in an accelerated socio-economic development of the region.  相似文献   

6.
李敏慧  吴保生  陈毅 《地理学报》2022,77(11):2878-2889
黄河源区不同地貌环境下的河网发育模式、平面形态等具有显著差异,存在羽状、矩形状、对称羽状和树状4种典型的河网类型。选取黄河源区83个典型子流域,计算了河网平面特征参数,探讨了河网参数与地形和气候因子的关系及河网类型的分布规律。结果表明,4类河网平面特征差异性通过流域宽长比、河网密度和流域内河流流向最大频数得到了较好的体现。流域坡度和降雨量对河网密度及流向的影响显著,且能较好解释河网密度及流向最大频数的变化;降雨对流域宽长比的影响显著。羽状主要分布在源区上游北部边缘地带,气候干旱,地表裸露,流域坡度均值为4.5°,流域高差均值为730 m。矩形状集中分布在若尔盖地区,气候相对湿润,且有大量的沼泽湿地,流域坡度和流域高差均值分别为2.3°和177 m。对称羽状处于高山峡谷地带,流域坡度和流域高差均值分别为16.9°和1167 m,降雨量变化范围大。树状分布在黄河源中游山区及中下游的冲积地貌,流域坡度和流域高差均值分别为15.4°和968 m,植被覆盖较好。结合4类河网的空间分布特征及河网参数与环境因子的多元回归分析结果分析,认为地形是决定河网平面形态分异的主要原因;当地形限制减小,气候条件和植被覆盖情况对河网的发展起了重要作用。  相似文献   

7.
Abstract In the Latnjavagge drainage basin (68°21′N, 18°29′E), an arctic‐oceanic periglacial environment in northernmost Swedish Lapland, the fluvial sediment transport and the characteristics and importance of high‐magnitude/low‐frequency fluvial events generated by intense snowmelt or heavy rainfall have been investigated and compared with snowmelt‐ and rainfall‐induced discharge peaks in the Levinson‐Lessing Lake basin (Krasnaya river system) on the Taimyr Peninsula, an arctic periglacial environment in northern Siberia (74°32′N, 98°35′E). In Latnjavagge (9 km2) the intensity of fluvial sediment transport is very low. Most of the total annual sediment load is transported in a few days during snowmelt generated runoff peaks. Due to the continuous and very stable vegetation covering most areas below 1300 m a.s.l. in the Latnjavagge catchment, larger rainfall events are of limited importance for sediment transport in this environment. Compared to that, in the c. 40 times larger Krasnaya riversystem rainfall‐generated runoff peaks cause significant sediment transport. The main sediment sources in the Latnjavagge drainage basin are permanent ice patches, channel debris pavements mobilized during peak discharges and exposing fines, and material mobilized by slush‐flows. In the Krasnaya river system river bank erosion is the main sediment source. In both periglacial environments more than 90% of the annual sediment yield is transported during runoff peaks. The results from both arctic periglacial environments underline the high importance of high‐magnitude/low‐frequency fluvial events for the total fluvial sediment budgets of periglacial fluvial systems. Restricted sediment availability is in both arctic environments the major controlling factor for this behaviour.  相似文献   

8.
Woody vegetation affects channel morphogenesis in Ozark streams of Missouri and Arkansas by increasing local roughness, increasing bank strength, providing sedimentation sites, and creating obstructions to flow. Variations in physiographic controls on channel morphology result in systematic changes in vegetation patterns and geomorphic functions with increasing drainage basin area. In upstream reaches, streams have abundant bedrock control and bank heights that typically are less than or equal to the rooting depth of trees. In downstream reaches where valleys are wider and alluvial banks are higher vegetation has different geomorphic functions. At drainage areas of greater than 100–200 kM2, Ozarks streams are characterized by longitudinally juxtaposed reaches of high and low lateral channel migration rates, referred to as disturbance reaches and stable reaches, respectively. Whereas stable reaches can develop stable forested floodplains (if they are not farmed), disturbance reaches are characterized by dynamic vegetation communities that interact with erosion and deposition processes.Disturbance reaches can be subdivided into low-gradient and high-gradient longitudinal zones. Low-energy zones are characterized by incremental, unidirectional lateral channel migration and deposition of gravel and sand bars. The bars are characterized by prominent bands of woody vegetation and ridge and swale topography. Channel monitoring data indicate that densely vegetated bands of woody vegetation formed depositional sites during bedload-transporting events. The same floods caused up to 20 m of erosion of adjacent cutbanks, scoured non-vegetated areas between vegetation bands, and increased thalweg depth and definition. In high-energy (or riffle) zones, channel movement is dominantly by avulsion. In these zones, vegetation creates areas of erosional resistance that become temporary islands as the channel avulses around or through them. Woody vegetation on islands creates steep, root-defended banks that contribute to narrow channels with high velocities.Calculation of hydraulic roughness from density and average diameter of woody vegetation groups of different ages indicates that flow resistance provided by vegetation decreases systematically with group age, mainly through decreasing stem density. If all other factors remain constant, the stabilizing effect of a group of woody vegetation on a gravel bar decreases with vegetation age.  相似文献   

9.
ABSTRACT Fluvial megafans chronicle the evolution of large mountainous drainage networks, providing a record of erosional denudation in adjacent mountain belts. An actualistic investigation of the development of fluvial megafans is presented here by comparing active fluvial megafans in the proximal foreland basin of the central Andes to Tertiary foreland‐basin deposits exposed in the interior of the mountain belt. Modern fluvial megafans of the Chaco Plain of southern Bolivia are large (5800–22 600 km2), fan‐shaped masses of dominantly sand and mud deposited by major transverse rivers (Rio Grande, Rio Parapeti, and Rio Pilcomayo) emanating from the central Andes. The rivers exit the mountain belt and debouch onto the low‐relief Chaco Plain at fixed points along the mountain front. On each fluvial megafan, the presently active channel is straight in plan view and dominated by deposition of mid‐channel and bank‐attached sand bars. Overbank areas are characterized by crevasse‐splay and paludal deposition with minor soil development. However, overbank areas also contain numerous relicts of recently abandoned divergent channels, suggesting a long‐term distributary drainage pattern and frequent channel avulsions. The position of the primary channel on each megafan is highly unstable over short time scales. Fluvial megafans of the Chaco Plain provide a modern analogue for a coarsening‐upward, > 2‐km‐thick succession of Tertiary strata exposed along the Camargo syncline in the Eastern Cordillera of the central Andean fold‐thrust belt, about 200 km west of the modern megafans. Lithofacies of the mid‐Tertiary Camargo Formation include: (1) large channel and small channel deposits interpreted, respectively, as the main river stem on the proximal megafan and distributary channels on the distal megafan; and (2) crevasse‐splay, paludal and palaeosol deposits attributed to sedimentation in overbank areas. A reversal in palaeocurrents in the lowermost Camargo succession and an overall upward coarsening and thickening trend are best explained by progradation of a fluvial megafan during eastward advance of the fold‐thrust belt. In addition, the present‐day drainage network in this area of the Eastern Cordillera is focused into a single outlet point that coincides with the location of the coarsest and thickest strata of the Camargo succession. Thus, the modern drainage network may be inherited from an ancestral mid‐Tertiary drainage network. Persistence and expansion of Andean drainage networks provides the basis for a geometric model of the evolution of drainage networks in advancing fold‐thrust belts and the origin and development of fluvial megafans. The model suggests that fluvial megafans may only develop once a drainage network has reached a particular size, roughly 104 km2– a value based on a review of active fluvial megafans that would be affected by the tectonic, climatic and geomorphologic processes operating in a given mountain belt. Furthermore, once a drainage network has achieved this critical size, the river may have sufficient stream power to prove relatively insensitive to possible geometric changes imparted by growing frontal structures in the fold‐thrust belt.  相似文献   

10.
Channel incision is part of denudation, drainage-network development, and landscape evolution. Rejuvenation of fluvial networks by channel incision often leads to further network development and an increase in drainage density as gullies migrate into previously non-incised surfaces. Large, anthropogenic disturbances, similar to large or catastrophic “natural” events, greatly compress time scales for incision and related processes by creating enormous imbalances between upstream sediment delivery and available transporting power. Field examples of channel responses to antrhopogenic and “natural” disturbances are presented for fluvial systems in the mid continent and Pacific Northwest, USA, and central Italy. Responses to different types of disturbances are shown to result in similar spatial and temporal trends of incision for vastly different fluvial systems. Similar disturbances are shown to result in varying relative magnitudes of vertical and lateral (widening) processes, and different channel morphologies as a function of the type of boundary sediments comprising the bed and banks. This apparent contradiction is explained through an analysis of temporal adjustments to flow energy, shear stress, and stream power with time. Numerical simulations of sand-bed channels of varying bank resistance and disturbed by reducing the upstream sediment supply by half, show identical adjustments in flow energy and the rate of energy dissipation. The processes that dominate adjustment and the ultimate stable geometries, however, are vastly different, depending on the cohesion of the channel banks and the supply of hydraulically-controlled sediment (sand) provided by bank erosion.The non-linear asymptotic nature of fluvial adjustment to incision caused by channelization or other causes is borne out in similar temporal trends of sediment loads from disturbed systems. The sediments emanating from incised channels can represent a large proportion of the total sediment yield from a landscape, with erosion from the channel banks generally the dominant source. Disturbances that effect available force, stream power or flow energy, or change erosional resistance such that an excess of flow energy occurs can result in incision. Channel incision, therefore, can be considered a quintessential feature of dis-equilibrated fluvial systems.  相似文献   

11.
Measurements of discharge and suspended sediment and organic matter yield from nine different drainage basins on the island Disko in central West Greenland were carried out in the period 19–30 July 1997. A series of landscape properties (glacier cover, altitude, slope, aspect and vegetation cover) were measured for each drainage basin from a digital elevation model and a satellite image. Principal Component Analysis and regression statistics have been used to examine which landscape parameters dominate the measured discharges and yields. It is concluded that differences in suspended sediment and organic matter yield between the drainage basins can be explained by the measured morphometric properties while differences in water run-off can not. Glacier cover percentage and percent area above 800 m a.s.l. were the most important parameters influencing suspended sediment and organic matter yield in the drainage basins on Disko during the study period.  相似文献   

12.
Plant species distributions often have been attributed to landform characteristics or their associated geomorphic processes. This complicates interpretation of vegetation patterns in that geomorphic processes shape, and are shaped by, landforms. To characterize the biogeographic impacts of this interaction, I used principal components analysis (PCA) to examine hypotheses regarding the structure of variation among soil properties in active barrier-island dune systems. Dune soils and vegetation were sampled on two well-recognized barrier-island morphologies. On low-profile, wave-dominated microtidal barrier islands (South Core Banks, North Carolina) frequent overwash exerts a greater control on the distribution of soil properties. On mixed-energy mesotidal barrier islands (Sapelo Island, Georgia), overwash is less frequent, and the distribution of soil properties is shaped by a complex dune topography. Nontrivial principal components on both islands captured an equivalent amount of variance in the soil data. However, there were inter-island differences in the dimensionality of these nontrivial principal components, and differences in the distribution of variance and factor loadings. Suites of topography-modifying species, unique to each island, were uniform in the strength of their individual correlation with local edaphic variability. I posit that soil variance structure is a useful criterion to distinguish the relative influence on vegetation patterns of soil properties expressed through landforms (Sapelo Island) versus sediment transport processes (South Core Banks). [Key words: dune vegetation, barrier islands, principal components analysis (PCA), overwash.]  相似文献   

13.
The Chaco is a large tropical plain located in the interior of South America, consisting of parts of Argentina, Paraguay and Bolivia. It is 840,000 km2 in area and is characterized by forests, savannas and extensive swamps, which give it a marked climatic and biogeographic identity. It encompasses five huge alluvial fans built by the major rivers which cross the region: Salado, Bermejo, Pilcomayo, Parapetí and Grande. The fans are composed of several sedimentary units, deposited during different times of the late Quaternary under diverse climates. Two fluvial terraces appear at the apex of each fan; the older one is probably late Pleistocene in age, the second was formed in postglacial times. Humid climates, such as the present one, favoured the generation of soils and stable fluvial belts; drier climates led to widespread sedimentation along small ephemeral channels and large spill-outs. During two intervals, on in the late Quaternary glacial maximum and the late Holocene dry climates occurred in the region, leading to the formation of dune fields and loess mantles.  相似文献   

14.
Taiwan is a region of rapid active tectonics, yet the study of the tectonic processes that shape the interior of the island is difficult due to the high rates of erosion and dense vegetation. We use digital topography to look for indications of active deformation preserved in the local geomorphology. In particular, anomalies in the regional pattern of drainage are used to infer zones of enhanced tectonic activity. The apparent anticlockwise rotation of major river systems in plan view indicates the presence of a diffuse zone of left-lateral shear running down the southeastern side of Taiwan. Asymmetries in the catchments of individual drainage basins show the influence of varying rates of uplift across southern Taiwan, with the most rapid uplift close to Taitung at the indentation point of the Luzon arc with the Chinese continental margin. Our interpretations, though based predominantly on remote-sensing observations, are consistent with the available field evidence. This study demonstrates the usefulness of drainage basins as tectonic markers in the quantification of regional strain and uplift, which may have wider applicability in other deforming parts of the world.  相似文献   

15.
The distribution of riparian vegetation in relation to channel morphology is poorly understood in canyon rivers, which are characterized by in-channel fluvial sediment deposits rather than flood plains. This study focuses on vegetation and sandbar characteristics in two reaches of the lower Little Colorado River canyon in Arizona–one reach with ephemeral flow from the watershed, and another with perennial baseflow from a spring. Both reaches have been colonized by the exotic Tamarix chinensis, a riparian species known for its geomorphic influence on river channels. On the basis of a sampling of 18 bars, results show that vegetation frequency and density is significantly greater in the perennial study reach. However, sandbar morphology variables do not differ between reaches, despite a significantly narrower and deeper ephemeral channel. Hydraulic calculations of flood depths and Pearson correlations between bar and vegetation variables indicate reach-specific biogeomorphic relationships. In the ephemeral reach, higher bars are less affected by flood inundation, support older vegetation, and may be more stable habitat for vegetation. In the wider perennial reach where bars are lower and more expansive, vegetation patterns relate to bar size, Tamarix being most common on the largest bars. Overall results suggest that (1) vegetation variation relates to baseflow hydrology, (2) bar formation relates to high discharge events, and (3) vegetation patterns respond to, rather than influence, sandbar form in this canyon riparian system.  相似文献   

16.
Quaternary catchments in the south of the Sorbas Basin, SE Spain have been affected by two regionally significant river captures. The river captures were triggered by changes in regional gradients associated with sustained Quaternary uplift in the region of 160 m Ma−1. The first capture occurred in the early Pleistocene and re-routed 15% of the original Sorbas Basin drainage into the Carboneras Basin to the south. The second occurred in the late Pleistocene and re-routed 73% of the original Sorbas Basin drainage to the east. This latter capture had dramatic consequences for base-level in the Sorbas Basin master drainage. Local base-level was lowered by 90 m at the capture site, 50 m at 7 km upstream and 25 m at 13 km upstream of the site. The base-level change instigated a complex re-organisation of the drainage networks in systems tributary to the master drainage over the ensuing period (some 100 ka). After the capture, drainage systems closer to the capture site experienced a tenfold increase in incision rates over most of their network. Those located some 13 km upstream of the capture site experienced a fivefold increase in incision, although in this instance, the changes do not appear to have propagated to the headwater regions of the drainage nets. The sensitivity of individual catchments was largely governed by geological controls (structure and lithology). The detailed network evolution in the most sensitive areas can be traced by reconstructing former drainage pathways using abandoned drainage cols and the alignment and degree of incision of the drainage networks. Three main stages of evolution can be identified which record the progressive spread of base-level changes from the master drainage. These are Stage 1 (pre-capture): original south-to-north consequent drainage; Stage 2 (early stage, post capture): aggressive subsequent southwest-to-northeast and east–west drainage developed along structural lineaments first in the east of the area (Stage 2a), and later in the west of the area (Stage 2b); and Stage 3 (late stage, post capture): obsequent drainage developing on the topography of the Stage 2 drainage. All stages of the network evolution are associated with drainage re-routing as a function of river capture at a variety of scales. The results highlight the complex response of the fluvial system, and the very different geomorphological histories of adjacent catchments, emphasising the need for regional approaches for examining long-term changes in fluvial systems.  相似文献   

17.
We reconstruct aspects of the history of Easter Island over the last 4-5 centuries based on the study of a core from Rano Raraku Lake, situated in the crater that contains the quarry of the island's giant statues or moai. We use microfossils of plants and animals to identify five zones. The last three of these are separated by waves of immigration from South America and from the subantarctic. We argue that the first or South American wave, dated to the second half of the 14th century, may represent a visit by South American Indians. Magnetic information, pollen, diatoms, chrysophyte stomatocysts and fossil plant pigments reveal a synchronism between the South American contact and the cessation of moai quarrying. We therefore suggest that Amerindians contributed to the cultural collapse of the island. The second or subantarctic wave may reflect an early European visit to the island, possibly by Cpt. James Cook in 1774, or by Jacob Roggeveen in 1722.  相似文献   

18.
This study explores the structure and modulation of the mean diurnal climate of Africa with a focus on satellite rainfall. Solar heating over tropical mountains and land-sea temperature gradients initiate moisture convergence in the afternoon-evening. The diurnal temperature range is from 5 °C along the coast to 20 °C in arid zones with low vegetation fraction. NCEP2 reanalysis reveals the diurnal circulation via continental-scale drainage and seabreeze flows. Factors modulating the diurnal cycle vary across four sub-regions: South Africa, East Congo, Ethiopia, and Guinea. In the Congo and Guinea coast the surface moisture and heat fluxes are important, while in South Africa convective available potential energy and vertical motion are influential. Ethiopia’s evening orographic convection is out of phase with surface fluxes. The diurnal residual calculated from NCEP2 fields exhibits a 2 km depth for thermal gradients and 200 km inland penetration of onshore flow by evening.  相似文献   

19.
The evolution process of the low-level westerly winds over the eastern North Pacific is investigated to understand the tropical cyclogenesis (TCG) of Tropical Storm Arlene (2005) over the Intra-Americas Sea (IAS). Also considered are the influences of the topography of the Central American mountain region interacting with the low-level westerly winds on Arlene's TCG by comparing results from a modified-topography simulation of Arlene's TCG with those from a simulation with the original topography in the Weather Research and Forecast (WRF) model. Interactions among large-scale circulations associated with subtropical highs in both hemispheres and an anticyclone over the warm eastern North Pacific produced low-level westerly winds into the IAS. WRF model experiments with a virtually elevated terrain filling in mountain passes in Central America resulted in the delayed and suppressed development of the incipient storm. The model experiments suggest that the low-level winds and moisture fluxes from the eastern North Pacific passing through the low-level mountain passes in Central America could play a critical role in the TCG process and perhaps also sustenance of storms over the western Caribbean.  相似文献   

20.
南澳岛退化草坡的植被恢复研究   总被引:7,自引:0,他引:7  
李萍  黄忠良 《热带地理》2007,27(1):21-24,65
在南澳岛建立次生草坡对照及草坡种植试验样地,观测群落植物多样性、土壤肥力及生物量变化,以探讨海岛退化草坡的植被恢复过程。结果显示,海岛迎风面上修建公路、风能发电场或开垦后的弃耕祼地在自然状况下很难恢复其植被,植物种类和数量甚至有所减少,植被覆盖度下降,需要进行人工植被恢复;在迎风面恶劣的环境下,次生草坡可能是一种偏途顶极,短时间内植物多样性变化不大。退化草坡的土壤肥力较低,开垦后若不及时恢复适当植被,情况会恶化。该岛草坡的生物量均较低,远低于该岛一般人工林或次生林的水平。海岛本身存在水分、土壤、生物条件等方面的脆弱性,在工程建设过程中应尽量避免对地形地貌和植被造成破坏,一旦破坏要尽快进行适生的人工植被恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号