共查询到20条相似文献,搜索用时 46 毫秒
1.
Daily precipitation forecast of ECMWF verified over Iran 总被引:1,自引:0,他引:1
Sahar Sodoudi Alimohammad Noorian Manfred Geb Eberhard Reimer 《Theoretical and Applied Climatology》2010,99(1-2):39-51
In this paper, the performance of the Centre for Medium Range Weather Forecast (ECMWF) model (t?+?27 h to t?+?51 h) in predicting precipitation is discussed. This model is the first, which has been verified over Iran. The spatial resolution of the model is 0.351° and the 24-h forecasts are compared with daily observations. The study concentrates on year 2001 and the precipitation measurements were collected from the data of 2,048 rain gauges in Iran. The accuracy of four different interpolation methods (nearest neighborhood, inverse distance, kriging, and upscaling) was investigated. Using cross-validation, the inverse distance method (IDM) with minimum mean error was applied. Verification results are given in terms of difference fields (mean error?=?0.46 mm/day), rank–order correlation coefficients (0.70), as well as accuracy scores (false alarm ratio?=?0.50 and probability of detection?=?0.60) and skill scores (true skill statistics [TSS]?=?0.45) in year 2001. The position of the rain band was only partly captured by the ECMWF model; however, the position of maximum precipitations agrees with the observations well. The results show that the high values of TSS are associated with the large amounts of precipitation (over 25 mm). Slight to moderate precipitation events have been underforecasted by the model (bias?<?1) and it leads to a small value of TSS for these thresholds (5–25 mm/day). The ECMWF model has better performance in high and mountainous regions than over flat terrain and in deserts. Comparing TSS over the Alborz and the Zagros Mountains, it is obvious that the ability of the model to predict the convective precipitation events needs some improvement. The amount of daily precipitation has been also slightly overestimated over Iran. From the beginning of January up to 21 March 2001, the ECMWF time series indicates an obvious phase shift of 1 day, although in other months, no phase shift is noticed. 相似文献
2.
基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)集合预报系统的降水相态产品(precipitation type,PTYPE),分别以HSS评分最优、TS评分最优和频率偏差最优为标准,运用最优概率阈值法,生成雨、雨夹雪、雪和冻雨4类降水相态的确定性预报产品,并与ECMWF集合预报系统控制成员及细网格模式确定性预报进行对比。最优概率阈值显示:3种最优标准下,不同相态降水最优概率阈值不同,但冻雨和降雪最优概率阈值均最大,为40%~80%,雨夹雪最优概率阈值最小,约为10%,三者最优概率阈值均随预报时效延长而减小;降雨最优概率阈值为7%~25%,随预报时效延长而增大。对比检验结果显示:最优概率阈值法明显提高了降水相态预报能力,且以HSS评分最优时预报效果最佳;最优概率阈值法有效减小冻雨空报,同时显著改善降雨和降雪预报的频率偏差和TS评分,对雨夹雪预报改进效果有限。 相似文献
3.
The application of numerical weather prediction(NWP) products is increasing dramatically. Existing reports indicate that ensemble predictions have better skill than deterministic forecasts. In this study, numerical ensemble precipitation forecasts in the TIGGE database were evaluated using deterministic, dichotomous(yes/no), and probabilistic techniques over Iran for the period 2008–16. Thirteen rain gauges spread over eight homogeneous precipitation regimes were selected for evaluation.The Inverse Distance Weighting and Kriging methods were adopted for interpolation of the prediction values, downscaled to the stations at lead times of one to three days. To enhance the forecast quality, NWP values were post-processed via Bayesian Model Averaging. The results showed that ECMWF had better scores than other products. However, products of all centers underestimated precipitation in high precipitation regions while overestimating precipitation in other regions. This points to a systematic bias in forecasts and demands application of bias correction techniques. Based on dichotomous evaluation,NCEP did better at most stations, although all centers overpredicted the number of precipitation events. Compared to those of ECMWF and NCEP, UKMO yielded higher scores in mountainous regions, but performed poorly at other selected stations.Furthermore, the evaluations showed that all centers had better skill in wet than in dry seasons. The quality of post-processed predictions was better than those of the raw predictions. In conclusion, the accuracy of the NWP predictions made by the selected centers could be classified as medium over Iran, while post-processing of predictions is recommended to improve the quality. 相似文献
4.
以中国2423个地面气象站点的降水传感器观测数据为基准,采用定量统计指标(相关系数R、均方根误差RMSE、平均绝对误差MAE、相对误差RE)以及分类统计指标(探测率POD、误报率FAR、虚报漏报率Bias、风险评分ETS),从不同空间尺度、不同时间尺度和不同降水强度三个维度,分析了GPM降水产品的观测准确性,以探究GPM卫星降水产品在中国大陆的适用性。结果表明:从不同空间尺度特征看,GPM降水在全国范围均呈现较高的观测准确性,72%的站点R值超过0.7,在华东地区最好,西北区相对较差;全国大部分区域都为正的相对误差,各区RE集中分布在0~20%。不同高程带内的准确性显示,GPM产品对降水的高估情况在低海拔(<2000 m)、高海拔(>4000 m)地区较为明显,在中海拔地区(2000~4000 m)GPM降水数据适用性相对较好。从不同时间尺度特征看,GPM降水产品与降水传感器实测降水年总量分布上较为一致,两者的R为0.75,但在量值上存在一定程度的偏差,RMSE为6.15 mm·d-1。从逐月结果看,GPM降水产品与地面降水传感器的一致性在1—10月表现较好,R均在0.7以上,11、12月略低,夏季误差值比冬季大。从不同降水强度特征看,POD随着降水强度的增加而降低,GPM降水产品对“中雨”强度降水事件的整体探测能力较优,而在“小雨”和“暴雨”的探测能力稍弱。 相似文献
5.
This study presents the evaluation of simulations from two new Canadian regional climate models (RCMs), CanRCM4 and CRCM5, with a focus on the models’ skill in simulating daily precipitation indices and the Standardized Precipitation Index (SPI). The evaluation was carried out over the past two decades using several sets of gridded observations that partially cover North America. The new Canadian RCMs were also compared with four reanalysis products and six other RCMs. The different configurations of the Canadian RCM simulations also permit evaluation of the impact of different spatial resolutions, atmospheric drivers, and nudging conditions. The results from the new Canadian models show some improvement in precipitation characteristics over the previous Canadian RCM (CRCM4), but these differ with the seasons. For winter, CanRCM4 and CRCM5 have better skill than most other models over all of North America. For the summer, CRCM5 0.44° performs best over the United States, while CRCM4 has the best skill over Canada. Good skill is exhibited by CanRCM4 and CRCM4 in simulating the 6-month SPI over the Prairies and the western US Corn Belt. In general, differences are small between runs with or without large-scale spectral nudging; differences are small when different boundary conditions are used. 相似文献
6.
Amit G. Dhorde Mohammad Zarenistanak R. H. Kripalani B. Preethi 《Meteorology and Atmospheric Physics》2014,124(3-4):205-216
Analysis of trends and projection of precipitation are of significance for the future development and management of water resource in southwest Iran. This research has been divided into two parts. The first part consists of an analysis of the precipitation over 50 stations in the study region for the period 1950–2007. The trends in this parameter were detected by linear regression and significance was tested by t test. Mann–Kendall rank test was also employed to confirm the results. The second part of the research involved future projection of precipitation based on four models. The models used were Centre National de Recherches Meteorologiques (CNRM), European Center Hamburg Model (ECHAM), Model for Interdisciplinary Research on Climate (MIROCH) and United Kingdom Meteorological Office (UKMOC). Precipitation projections were done under B1 and A1B emissions scenarios. The results of precipitation series indicated that most stations showed insignificant trend in annual and seasonal series. The highest numbers of stations with significant trends occurred in winter while no significant trends were detected by statistical tests in summer precipitation. No decreasing significant trends were detected by statistical tests in annual and seasonal precipitation series. The result of projections showed that precipitation may decrease according to majority of the models under both scenarios but the decrease may not be large, except according to MIROCH model. Autumn precipitation may increase with higher rates than other seasons at the end of this century. 相似文献
7.
近60年中国不同区域降水的气候变化特征 总被引:13,自引:2,他引:13
利用1951-2009年中国503站日降水量资料,研究了我国各季各地区降水年代际变化的特征,并分析了其对我国干旱演变的影响。结果表明:近60年来我国各区域年平均降水量大多为减少趋势,其中华北、西南地区减少明显;各地区秋季降水偏少的趋势最为显著,可能是导致秋季干旱增多以及秋冬连季干旱频繁的主要原因。2000年以后北方夏季降水呈减少趋势,其中华北夏季降水明显减少,而冬季降水趋于增加,南方秋季降水减少明显,而春季降水增多。云南等西南地区秋冬春连旱偏多的原因之一可能与孟加拉湾季风结束偏早有关。 相似文献
8.
Żaneta Polkowska Kamila Skarżyńska Tadeusz Górecki Jacek Namieśnik 《Journal of Atmospheric Chemistry》2006,53(3):211-236
Formaldehyde levels were determined in various forms of atmospheric precipitation (rain, snow, road and roof runoff, throughfall) and deposition (rime, hoarfrost, dew) collected over twelve months at various locations in two large urban agglomerations and along two highways. HCHO was found in 303 of 500 samples analyzed, with concentrations ranging from 0.05 to 10.7 mg/dm3. The results confirmed the significant effect of vehicular traffic on formaldehyde levels in various forms of wet deposition. Correlations of formaldehyde levels with other parameters commonly monitored in precipitation and/or deposition were also examined. No correlation was found between HCHO levels and rain volume. On the other hand, positive correlations were found for hydrogen peroxide, non-sea-salt sulphate, nitrate, ammonia, and total organic carbon (TOC). In addition, the effect of selected meteorological parameters (temperature, wind speed, wind direction, rainfall) on the concentration of formaldehyde in various forms of precipitation and runoff (road runoff, roof runoff, throughfall) was studied. The only correlation found was that between HCHO concentration and daily rainfall. 相似文献
9.
中国东部的降水区划及备区旱涝变化的特征 总被引:2,自引:0,他引:2
为了研究我国旱涝发生的规律、成因和预测,事先掌握降水的气候型区和各区降水变化的气候特征是十分必要的。本文利用1951—1986年中国东部140个站的月降水资料,分析了下半年降水相对系数、月际和年际标准差等参量时空变化的特征,并综合应用逐级归并法和成批调整法,对中国东部地区进行了降水气候区的划分。在此基础上,进一步探讨了各区旱涝的频数和长期变化的趋势。 相似文献
10.
中国东部的降水区划及各区旱涝变化的特征 总被引:26,自引:4,他引:26
为了研究我国旱涝发生的规律、成因和预测,事先掌握降水的气候型区和各区降水变化的气候特征是十分必要的。本文利用1951-1986年中国东部140个站的月降水资料,分析了下半年降水相对系数、月际和年际标准差等参量时空变化的特征,并综合应用逐级归并法和成批调整法,对中国东部地区进行了降水气候区的划分。在此基础上,进一步探讨了各区旱涝的频数和长期变化的趋势。 相似文献
11.
使用2015年10月—2018年9月欧洲中期天气预报中心集合预报系统(ECMWF EPS)逐日降水极端天气指数(EFI)预报资料,分析新疆区域降水EFI产品与强降水的对应关系并得到预报阈值。结果表明:预报的EFI与实况降水量存在正相关关系,随着降水量增加,EFI预报结果具有线性增加趋势,说明EFI对强降水有一定的指示意义。各量级降水预报的最高TS评分随着预报时效的增加而减小,且随着降水量等级的增大而减小。不同季节暴量降水发生站次为夏季最多,冬季最少,对应的EFI阈值大都在0.4~0.6,夏季EFI值范围在0.2~0.7,夏季更易发生暴量降水。随着预报时效增加,暴量降水发生站点频次最多所对应的EFI值逐渐减小。随着降水量级增加,空报率减小幅度不大,但漏报率增加。 相似文献
12.
Medium to long-term precipitation forecasting plays a pivotal role in water resource management and development of warning systems.Recently,the Copernicus Climate Change Service(C3S)database has been releasing monthly forecasts for lead times of up to three months for public use.This study evaluated the ensemble forecasts of three C3S models over the period 1993-2017 in Iran’s eight classified precipitation clusters for one-to three-month lead times.Probabilistic and non-probabilistic criteria were used for evaluation.Furthermore,the skill of selected models was analyzed in dry and wet periods in different precipitation clusters.The results indicated that the models performed best in western precipitation clusters,while in the northern humid cluster the models had negative skill scores.All models were better at forecasting upper-tercile events in dry seasons and lower-tercile events in wet seasons.Moreover,with increasing lead time,the forecast skill of the models worsened.In terms of forecasting in dry and wet years,the forecasts of the models were generally close to observations,albeit they underestimated several severe dry periods and overestimated a few wet periods.Moreover,the multi-model forecasts generated via multivariate regression of the forecasts of the three models yielded better results compared with those of individual models.In general,the ECMWF and UKMO models were found to be appropriate for one-month-ahead precipitation forecasting in most clusters of Iran.For the clusters considered in Iran and for the long-range system versions considered,the Météo France model had lower skill than the other models. 相似文献
13.
Validation of Daily Precipitation from Two High-Resolution Satellite Precipitation Datasets over the Tibetan Plateau and the Regions to Its East 总被引:1,自引:0,他引:1 下载免费PDF全文
Daily precipitation amounts and frequencies from the CMORPH (Climate Prediction Center Morphing Technique) and TRMM (Tropical Rainfall Measuring Mission) 3B42 precipitation products are validated against warm season in-situ precipitation observations from 2003 to 2008 over the Tibetan Plateau and the regions to its east. The results indicate that these two satellite datasets can better detect daily precipitation frequency than daily precipitation amount. The ability of CMORPH and TRMM 3B42 to accurately detect daily precipitation amount is dependent on the underlying terrain. Both datasets are more reliable over the relatively flat terrain of the northeastern Tibetan Plateau, the Sichuan basin, and the mid-lower reaches of the Yangtze River than over the complex terrain of the Tibetan Plateau. Both satellite products are able to detect the occurrence of daily rainfall events; however, their performance is worse in regions of complex topography, such as the Tibetan Plateau. Regional distributions of precipitation amount by precipitation intensity based on TRMM 3B42 are close to those based on rain gauge data. By contrast, similar distributions based on CMORPH differ substantially. CMORPH overestimates the amount of rain associated with the most intense precipitation events over the mid-lower reaches of the Yangtze River while underestimating the amount of rain associated with lighter precipitation events. CMORPH underestimates the amount of intense precipitation and overestimates the amount of lighter precipitation over the other analyzed regions. TRMM 3B42 underestimates the frequency of light precipitation over the Sichuan basin and the mid-lower reaches of the Yangtze River. CMORPH overestimates the frequencies of weak and intense precipitation over the mid-lower reaches of the Yangtze River, and underestimates the frequencies of moderate and heavy precipitation. CMORPH also overestimates the frequency of light precipitation and underestimates the frequency of intense precipitation over the other three regions. The TRMM 3B42 product provides better characterizations of the regional gamma distributions of daily precipitation amount than the CMORPH product, for which the cumulative distribution functions are biased toward lighter precipitation events. 相似文献
14.
15.
利用10年的TRMM卫星降水雷达观测资料, 首次对青藏高原及其下游平原及海洋地区降水厚度的地区差异进行了对比分析, 并对青藏高原及其周边地区对流和层云降水厚度的水平分布及其日变化和季节变化进行了统计分析, 结果表明: (1) 青藏高原地区对流和层云降水厚度都要比下游平原地区更为浅薄, 东部海洋地区对流降水厚度比平原地区小, 而层云降水厚度与平原地区相当。青藏高原及其下游平原地区对流降水厚度的日变化特征非常明显, 海洋地区对流降水厚度日夜差异则不大。层云降水厚度在各地区的日变化特征都不明显。青藏高原、下游平原及海洋地区对流和层云降水厚度的季节变化都非常明显, 从冬至夏, 对流和层云降水逐渐变得深厚, 而从夏入冬, 对流和层云降水则逐渐变得浅薄。(2) 青藏高原及其周边地区对流和层云平均降水厚度的分布形式和降水量分布具有较好的对应关系, 降水量大的地区其降水厚度一般较为深厚, 降水少的地区则降水厚度比较浅薄。对流和层云降水厚度存在明显差异, 对流降水一般要比层云降水深厚。青藏高原及其周边地区降水厚度水平分布的日夜差距不大, 但季节变化非常明显, 且与气候系统的季节变化紧密相关。 相似文献
16.
Summary The temporal and spatial precipitation regime of Iran was analysed using multivariate analyses of monthly mean precipitation
records for 71 stations. A Principal Component Analysis was applied to the correlation matrix in order to describe the intra-annual
variations of precipitation. The Principal Component scores were mapped to visualize the spatial structure of the three derived
precipitation regimes. By applying an agglomerative clustering (WARD) of the three Principal Component scores, five homogeneous
spatial clusters, representing five precipitation regions, were developed. The intra-annual types of precipitation distribution,
shown by the five clusters, are described and discussed.
Received November 24, 1997 Revised July 17, 1998 相似文献
17.
伊朗高压东伸对西藏高原汛期降水的影响 总被引:2,自引:0,他引:2
利用NCEP/NCAR再分析资料和西藏高原气象观测站逐日降水资料对1980—2011年5—9月967个伊朗高压东伸影响高原个例进行了分析,将西藏高原降水分布类型分为大雨型、中雨型、小雨型和无雨型四类分布,分别有158、516、165和128 d;当伊朗高压脊线偏北(南)时,500 hPa的南北气流辐合偏强(弱),200 hPa辐散偏强(弱),高原上的降水偏大(小);伊朗高压东伸除直接影响西藏高原的环流外,当其脊线偏北(南),索马里越赤道急流强度偏强(弱),导致孟加拉湾水汽输送多(少),高原降水偏强(弱)。 相似文献
18.
利用江西省93个国家气象观测站降水量资料,对2014年ECMWF集合预报降水统计量进行逐6 h和24 h晴雨检验、降水分级检验及区域性暴雨检验。结果表明:1)10%、25%、Mode、融合、最小值在晴雨预报准确率方面较控制预报更有参考价值。2)对于全年降水分级检验,10%、25%、Mode、融合、最小值这5个统计量在小雨的预报方面较控制预报更有参考价值;中位数、概率对中雨的ETS评分要略高于控制预报;90%、75%、概率对大雨预报比控制预报好。对于暴雨预报,最大值、90%、融合比控制预报好;融合、最大值对大暴雨落区的指示意义不大,但对大暴雨量级降水的可能性可以供预报员参考。3)对于区域性暴雨预报,90%、融合、最大值的预报技巧比控制预报高,最大值虽然空报较严重,但对降水量级有一定的指示意义。集合预报各统计量对于强降水过程爆发或发展阶段的预报效果不如降水过程成熟期或末期好。 相似文献
19.
为讨论CMA-GFS模式与ECMWF模式对不同要素预报性能的差异,选用2019—2021年500 hPa位势高度、地面气压、地面2 m气温、12 h降水量的4种要素为对象,采用跳跃指数为评价指标,对比分析了不同区域CMA-GFS、ECMWF模式预报的不一致性特征。结果表明:1)在形势产品(500 hPa位势高度、地面气压)预报方面,两种模式多日平均预报跳跃指数和频率(即预报不一致性)随预报时效的延长而逐渐增大,总体而言CMA-GFS模式预报不一致性比ECMWF模式略显著。2)在要素产品(地面2 m气温、12 h降水量)预报方面,ECMWF模式预报的跳跃指数、频率都随预报时效的延长而逐渐增大;CMA-GFS模式预报的跳跃指数、频率随预报时效的延长出现“两头大、中间小”的变化;CMA-GFS模式预报不一致性比ECMWF模式显著,尤其短预报时效差异更明显。3)除CMA-GFS模式12 h降水预报外,同一模式相同要素预报区域范围越大预报跳跃指数越小,两者呈反比关系。4)两种模式的500 hPa位势高度、地面气压、地面2 m气温预报的跳跃指数分布均呈自南向北逐渐增大趋势,而12 h降水量预报的跳... 相似文献
20.
Evaluation of the Effect of Artificial Precipitation Enhancement over Eastern Hexi Corridor 下载免费PDF全文
This paper employed the non-randomization experiments such as the sequential test, the regional control test, the double ratio analysis evaluation method, and the regional regression test to analyze the effects of the artificial precipitation enhancement operations, which were carried out over eastern Hexi Corridor from May to September during 1997-2004. It is discovered that, after the implementation of the arti cial precipitation enhancement operations, the rainfall amount increased by 161.5 mm averagely in 8 yr,that is,an average relative precipitation enhancement ratio equals 43%.This indicates that the effects of artificial precipitation
enhancement operations over eastern Hexi Corridor are obvious, thus carrying out these operations is feasible.The artificial precipitation enhancement opens a new way for eastern Hexi Corridor to exploit and utilize the air water resources, to ameliorate the ecological environment, and to increase the water store in reservoirs. 相似文献