首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Gridded monthly evaporation data for 1958–2006 from the Woods Hole Oceanographic Institution data set are used to investigate interannual variability of Mediterranean evaporation during cold and hot seasons and its relation to regional atmospheric dynamics, sea surface temperature and atmospheric elements of the hydrological cycle. The first EOF mode of Mediterranean evaporation, explaining more than 50% of its total variance, is characterized by the monopole pattern both in winter and summer. However, despite structural similarity, the EOF-1 of Mediterranean evaporation is affected by different climate signals in cold and hot seasons. During winter the EOF-1 is associated with the East Atlantic teleconnection pattern. In summer, there is indication of tropical influence on the EOF-1 of Mediterranean evaporation (presumably from Asian monsoon). Both in winter and summer, principal components of EOF-1 demonstrate clear interdecadal signals (with a stronger signature in summer) associated with large sea surface temperature anomalies. The results of a sensitivity analysis suggest that in winter both the meridional wind and the vertical gradient of saturation specific humidity (GSSH) near the sea surface contribute to the interdecadal evaporation signal. In summer, however, it is likely that the signal is more related to GSSH. Our analysis did not reveal significant links between the Mediterranean evaporation and the North Atlantic Oscillation in any season. The EOF-2 of evaporation accounts for 20% (11%) of its total variance in winter (in summer). Both in winter and summer the EOF-2 is characterized by a zonal dipole with opposite variations of evaporation in western and eastern parts of the Mediterranean Sea. This mode is associated presumably with smaller scale (i.e., local) effects of atmospheric dynamics. Seasonality of the leading modes of the Mediterranean evaporation is also clearly seen in the character of their links to atmospheric elements of the regional hydrological cycle. In particular, significant links to precipitation in some regions have been found in winter, but not in summer.  相似文献   

2.
Interannual and longer-period variability of the Mediterranean sea surface temperature is studied in terms of standard deviations and linear trends based on the 1951–2000 data. It is shown that both standard deviations and linear SST trends in the Mediterranean Sea are clearly season-dependent. Seasonality of standard deviations is characterized by a zonally-oriented seesaw with opposite changes in standard deviations in the western and eastern parts of the basin from season to season. The SST trend seasonality is pronounced in winter in predominant negative SST trends, and in summer in positive trends. Such seasonal differences indicate that long-term Mediterranean SST variability has different mechanisms of formation.  相似文献   

3.
The regional features oflong-term variability ofsea surface temperature (SST) in the Black Sea are analyzed using the satellite data for 1982-2014. It is demonstrated that the maximum intraannual and interannual variability of SST is registered on the northwestern shelf of the Black Sea. The high level of interannual variability of SST and maximum linear trends are observed in the northeastern part of the sea. The qualitative connection is revealed between the long-term variability of SST and the variations in the intensity of the Black Sea Rim Current in the long-term seasonal cycle. An increase in the level of interannual variability of SST is observed in summer, when the Black Sea Rim Current weakens. The significant negative correlation is revealed between the interannual anomalies of SST and the NAO index. The highest correlation coefficients are obtained for the eastern part of the Black Sea and near the Crimean coast.  相似文献   

4.
Physical forcing and biological response are highly variable over a wide range of scales in the South China Sea. The present paper analyzed interannual variability of the surface chlorophyll-a concentration of the South China Sea using NASA standard SeaWiFS monthly products from 1997 to 2007. Time series of monthly data were first smoothed using a 12-month running mean filter. An empirical orthogonal function (EOF) analysis was performed to evaluate the interannual variability. The first EOF mode is characterized by a higher surface chlorophyll-a concentration in the deep basin of the South China Sea with a maximum value southwest of Luzon Strait. The corresponding time coefficient function is highly correlated with the multivariate ENSO index (MEI). The correlation coefficient is ?0.61 when the time coefficient function lags the MEI by 9?months. The second EOF mode is characterized by a northwest lower chlorophyll-a concentration. The corresponding time coefficient function correlates with the MEI at a correlation coefficient equal to 0.88, with a lag of 1?month. The third EOF mode shows the interannual variability of the chlorophyll-a concentration has some relationship with Indian Ocean dipole mode as well. The link between the climate and ocean biological states in the South China Sea is due to changes in upper-ocean temperature and wind field, which influence the availability of nutrients for phytoplankton growth.  相似文献   

5.
利用Hadley海冰密集度资料和NCEP/NCAR再分析资料,分析了北极海冰融冰量及其与大气变量年际关系的年代际变化。结果表明,北极海冰存在显著的年代际变化,且有较强的区域性。东西伯利亚海和波弗特海海冰融冰量的平均值变大且方差增大,格陵兰岛以东洋面海冰融冰量的量值和变率均在减弱。对3个不同气候时段内北极海冰融冰量进行EOF分解,前两个模态均在3个气候时段发生显著的年代际变化,东西伯利亚海海冰融冰量的增加与EOF第一模态年代际变化相关,而EOF第二模态则明显造成了波弗特海海冰的年代际消融。并且,与之相应的大气环流也出现了明显的年代际变化,它们与AO/NAO的年际关系也存在年代际转折,融冰量第二模态与AO的年际关系更为紧密,1960—1990年第二模态与AO的相关系数仅为0.186,而1980—2010年相关系数已升高至0.367。整个北冰洋的海冰融冰量与AO的年际关系也出现了年代际增强,尤其是东西伯利亚地区海冰融冰量与AO的年际关系发生了年代际增强,1980—2010年两者相关达到了0.4以上。而波弗特海融冰量与AO相关系数变化较大,1960—1990年其的相关系数高达-0.488,1980年后却减少至0.161。然而AO却未发生明显的年代际变化。造成北极海冰融冰量及其与大气变量年际关系发生年代际变化的主要因子之一是波弗特高压,其年代际减弱使得极区向东西伯利亚海和波弗特海的海冰输送减弱,导致这两个区域海冰减少,使得AO与北极海冰的年际关系发生了年代际转折。  相似文献   

6.
马音  陈文  冯瑞权 《大气科学》2012,36(2):397-410
基于我国160站59年(1951~2009年)的月降水观测资料、美国气象环境预报中心和国家大气研究中心(NCEP/NCAR)提供的再分析资料和Hadley中心的海表温度(Sea Surface Temperature,简称SST)资料,对我国东部(100°E以东,15°N~40°N)梅雨期(6月和7月)降水的时空变化特...  相似文献   

7.
本文主要研究了1979—2016期间斯里兰卡在西南季风期间降水的年代际、年际变化以及与印度洋海温的联系.首先用经验正交的方法分析了斯里兰卡以及周边地区降水的时空分布,发现前两个模态能够解释超过70%的方差.其中第一模态为均一模态,且其PC1以及斯里兰卡7 a滑动平均降水序列都有年代际变化,降水异常在2000年前后异常偏多和偏少.通过合成分析发现2000年之后降水的异常减少与热带西部、中部印度洋的暖海温异常有关.暖海温异常通过调整经向环流引起了斯里兰卡上空的下沉运动,抑制了降水.在第二模态中,负的信号出现在斯里兰卡大部分地区,只有在斯里兰卡北部海角很小地区出现了正的信号.PC2表现出了年际变化,且与热带东南印度洋海温异常有显著的关系.通过Gill-Matsuno响应,热带东南印度洋海温异常造成热带北印度洋上空的气旋性环流异常,引起了水汽的辐合,从而利于降水.  相似文献   

8.
ABSTRACT

Historical variability in sea surface temperature (SST) in the North Atlantic (NA) is examined using trend and Empirical Orthogonal Function (EOF) analyses of annual and summer means from three interpolated monthly datasets: Hadley Centre Sea Ice and Sea Surface Temperature (HadISST1), Extended Reconstruction of SST (ERSST), and Centennial in situ Observation-Based Estimates (COBE). Comparisons with time series of upper-ocean temperature from four monitoring sites off Atlantic Canada reveal substantial similarity in the interannual to multi-decadal variability but notable differences in the longer-term trends. The magnitude of decadal-scale variability is comparable to, or greater than, the long-term changes in all of the datasets; together with the trend discrepancies, this needs to be considered in climate change applications. Averaged over the NA, the annual means have a long-term increasing trend and a pronounced multi-decadal variation, resembling those in global mean (land-ocean) surface temperature and the Atlantic Multi-decadal Oscillation (AMO). There is remarkable similarity in the spatial and temporal variability of the three leading EOF modes from the different gridded datasets, with the first highly correlated with the AMO, the second modestly correlated with the winter North Atlantic Oscillation, and the third apparently related to ocean circulation variability. Trends since 1981 are generally two to three times larger than those since 1900 and 1950, which is at least partly related to the phase of the AMO. Trends in the summer means are generally larger than in the annual means. Overall, the results provide support for both anthropogenic global warming and decadal-scale natural variations making important contributions to ocean climate variability in the Northwest Atlantic.  相似文献   

9.
利用河南省49个地面气象台站1979—2011年的月平均地面水汽压资料,分析了近33a来河南省四季水汽压的时空分布特征,在此基础上,对夏季地面水汽压进行了分区。结果表明:①河南省四季地面水汽压多年平均的空间分布较为相似,都呈现出由西北向东南递增的趋势。②EOF分解表明,河南省四季地面水汽压空间变化的最主要分布是全省一致型。③河南省四季地面水汽压存在明显的年际和年代际变化,除冬季主要存在准15a的年代际变化外,其余季节则在多数时段存在着准5a左右的年际变化;各季地面水汽压均呈线性增加趋势,其中冬春(夏秋)季增加趋势(不)明显。④通过REOF分解,结合地理位置和气候特点,可将河南省夏季地面水汽压分为豫北、豫东南和豫西3个区。  相似文献   

10.
刘德昊  朱伟军 《气象科学》2021,41(3):331-338
基于1967-2017年美国环境预报中心和国家大气研究中心(NCEP/NCAR)的逐日再分析资料及英国气象局哈德来中心(Hadley Centre)的海温资料,通过计算冬季东北冷涡结构的特征指数并利用经验正交函数分解等方法,研究了冬季东北冷涡的时空变化特征及其与环流和海温变化的联系.结果表明:(1)冬季东北冷涡具有显著...  相似文献   

11.
A significant interdecadal climate shift of interannual variability and predictability of two types of the El Niño-Southern Oscillation (ENSO), namely the canonical or eastern Pacific (EP)-type and Modoki or central Pacific (CP) type, are investigated. Using the retrospective forecasts of six-state-of-the-art coupled models and their multi-model ensemble (MME) for December–January–February during the period of 1972–2005 along with corresponding observed and reanalyzed data, we examine the climate regime shift that occurred in the winter of 1988/1989 and how the shift affected interannual variability and predictability of two types of ENSO for the two periods of 1972–1988 (hereafter PRE) and 1989–2005 (hereafter POST). The result first shows substantial interdecadal changes of observed sea surface temperature (SST) in mean state and variability over the western and central Pacific attributable to the significant warming trend in the POST period. In the POST period, the SST variability increased (decreased) significantly over the western (eastern) Pacific. The MME realistically reproduces the observed interdecadal changes with 1- and 4-month forecast lead time. It is found that the CP-type ENSO was more prominent and predictable during the POST than the PRE period while there was no apparent difference in the variability and predictability of the EP-type ENSO between two periods. Note that the second empirical orthogonal function mode of the Pacific SST during the POST period represents the CP-type ENSO but that during the PRE period captures the ENSO transition phase. The MME better predicts the former than the latter. We also investigate distinctive regional impacts associated with the two types of ENSO during the two periods.  相似文献   

12.
Based on the simple ocean data assimilation (SODA) reanalysis dataset from the University of Maryland and the method of Empirical Orthogonal Functions (EOF), the characteristics of interannual and interdecadal variabilities of the equatorial Pacific subsurface oceanic temperature anomaly (SOTA) are captured. The first and second modes of the equatorial Pacific SOTA in the interannual and interdecadal variations are found respectively and the effect of the second mode on the ENSO cycle is discussed. Results show that the first mode of SOTA’s interannual and interdecadal variabilities exhibit a dipole pattern, indicating that the warm and cold temperature anomalies appear simultaneously in the equatorial subsurface Pacific. The second mode shows coherent large-scale temperature anomalies in the equatorial subsurface Pacific, which is a dominant mode in the evolution of ENSO cycle. The temporal series of the second mode has a significant lead correlation with the Ni?o-3.4 index, which can make a precursory prediction signal for ENSO. The function of this prediction factor in SOTA is verified by composite and case analyses.  相似文献   

13.
利用我国160个站点58年(1951~2008年)的降水资料、NCEP/NCAR再分析环流资料和Hadley海表温度资料,对我国秋季降水年际变化的特征和可能成因进行了分析。结果显示,秋季降水前两模态分别反映长江流域及以南地区和长江以北的江淮、黄淮、华北、四川盆地北部至河套等地降水的变化,两降水模态的变化都以年际尺度为主,年代际变化特征不明显。就环流形势而言,第一模态的年际变化主要与西太平洋副热带高压的强度及相应的对流层低层菲律宾群岛附近的异常气旋/反气旋联系紧密,第二模态的年际变化则可能受到副热带高压的南北位置和相应的日本岛附近的异常气旋/反气旋的影响。同时,两模态及相应的异常环流还分别与热带东印度洋和热带西太平洋附近的异常垂直运动关系密切,热带地区的异常垂直运动可能通过经圈方向的异常环流影响到东亚地区。此外,两降水模态不仅与热带地区的异常环流关系密切,而且与热带海温异常也存在紧密的联系。与两模态相关联的热带太平洋海温异常显示出不同的分布特征,当热带东太平洋偏暖/冷,西太平洋偏冷/暖时,长江以南地区降水偏多/少。而当热带东太平洋和中太平洋一致偏暖/冷时,长江以北地区降水易偏少/多。两降水模态与热带海温及热带地区异常环流之间的密切关系显示热带太平洋海温异常的不同分布可能通过激发不同的热带地区异常垂直环流形势而对降水产生影响。  相似文献   

14.
Monthly mean sea surface temperature (SST), free air temperature from satellite microwave sounding units (MSU) and oceanic surface energy fluxes are subjected to empirical orthogonal function (EOF) analysis for a common decade to investigate the physical relationships involved. The first seasonal modes of surface solar energy flux and SST show similar inter-hemispheric patterns with an annual cycle. Solar flux appears to control this pattern of SST. The first seasonal mode of MSU is similar with, additionally, land-sea differences; MSU is apparently partly controlled by absorption of solar near-infrared radiation and partly by sensible heat from the land surface. The second and third seasonal eigenvector of SST and solar flux exhibit semi-annual oscillations associated with a pattern of cloudiness in the subtropics accompanying the translation of the Hadley cell rising motion between the hemispheres. The second seasonal mode of MSU is dominated by an El Niño signal. The first nonseasonal EOFs of SST and solar flux exhibit El Niño characteristics with the solar pattern being governed by west-to-east translation of a Walker cell type pattern. The first non-seasonal EOF of MSU shows a tropical strip pattern for the El Niño mode, which is well correlated with the latent heat fluxes in the tropical east Pacific but not in the tropical west Pacific. Two possible explanations are: an increase in subsidence throughout the tropical strip driven by extra evaporation in the tropical east Pacific and consequent additional latent heat liberation; a decrease of meridional heat flux out of the tropics.  相似文献   

15.
Atmospheric water vapor content(WVC) is a critical factor for East Asian winter precipitation. This study investigates the dominant modes of interannual variability in WVC over East Asia during winter and their underlying mechanisms.Based on the empirical orthogonal function(EOF) method, the leading mode(EOF1, R~2 = 28.9%) of the interannual variability in the East Asian winter WVC exhibits a meridional dipole pattern characterized by opposite WVC anomalies over northeastern China and eastern China; the second mode(EOF2, R~2 = 24.3%) of the interannual variability in the East Asian winter WVC exhibits a monopole pattern characterized by consistent WVC anomalies over eastern China. EOF1 is mainly modulated by two anomalous zonal water vapor transport(WVT) branches over northeastern China and eastern China, which are associated with an anomalous atmospheric wave train over Eurasia affected by sea ice cover in the Kara Sea-Barents Sea(SIC-KSBS) area in the preceding October-November(ON). EOF2 is mainly modulated by an anomalous westerly WVT branch over eastern China, which is associated with a circumglobal atmospheric zonal wave train in the Northern Hemisphere. This circumglobal zonal wave train is modulated by concurrent central and eastern tropical Pacific sea surface temperature anomalies. The SIC-KSBS anomalies in ON and the concurrent SST anomalies over tropical Pacific may partially account for the interannual variability of EOF1 and EOF2 winter WVC, and thus may provide a theoretical basis for improving the prediction of winter climate over East Asia.  相似文献   

16.
Diagnostic study on seasonality and interannual variability of wind field   总被引:9,自引:0,他引:9  
l.Intr0ductionThoughseasonalvariationoftheatmosphericgeneralcirculationismainlycausedbythatofthesolarradiation,itsdistributionsareinhomogeneousovertheglobe,forinstance,itismoresignificantinmonsoonregionthaninanyotherregions.Inatraditionalsense,mon-soonsummarisesalldrasticseasonalvariationsinthetropicsandsubtropics(e.g.,IndiaandEastAsia).Besidestheclassicmonsoonregions,thereexistsomeotherregionsovertheglobe,wheretheseasonalvariationisclearorevendrastic.Inordertodescribequantitativelysea-sonal…  相似文献   

17.
The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981–2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models’ ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Niño-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME’s success in predicting the EOF1 (EOF2) is likely to lead to a better prediction of JJA precipitation anomalies over East Asia and the North Pacific (central and southern Europe and western North America).  相似文献   

18.
Interdecadal changes in the Asian winter monsoon (AWM) variability are investigated using three surface air temperature datasets for the 55-year period of 1958–2012 from (1) the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 1 (NCEP), (2) combined datasets from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-yr reanalysis and interim data (ERA), and (3) Japanese 55-year reanalysis (JRA). Particular attention has been paid to the first four empirical orthogonal function (EOF) modes of the AWM temperature variability that together account for 64% of the total variance and have been previously identified as predictable modes. The four modes are characterized as follows: the first mode by a southern warming over the Indo-western Pacific Ocean associated with a gradually increasing basin-wide warming trend; the second mode by northern warming with the interdecadal change after the late 1980s; the third and fourth modes by north-south triple pattern, which reveal a phase shift after the late 1970s. The three reanalyses agree well with each other when producing the first three modes, but show large discrepancy in capturing both spatial and temporal characteristics of the fourth mode. It is therefore considered that the first three leading modes are more reliable than the rest higher modes. Considerable interdecadal changes are found mainly in the first two modes. While the first mode shows gradually decreasing variance, the second mode exhibits larger interannual variance during the recent decade. In addition, after the late 1970s, the first mode has a weakening relationship with the El Niño-Southern Oscillation (ENSO) whereas the second mode has strengthening association with the Artic Oscillation (AO). This indicates an increasing role of AO but decreasing role of ENSO on the AWM variability. A better understanding of the interdecadal change in the dominant modes would contribute toward advancing in seasonal prediction and the predictability of the AWM variability.  相似文献   

19.
A study has been made, using the National Centers for Environmental Prediction and National Center for Atmospheric Research re-analysis 500 hPa geopotential height data, to determine how intraseasonal variability influences, or can generate, coherent patterns of interannual variability in the extratropical summer and winter Southern Hemisphere atmospheric circulation. In addition, by separating this intraseasonal component of interannual variability, we also consider how slowly varying external forcings and slowly varying (interannual and longer) internal dynamics might influence the interannual variability of the Southern Hemisphere circulation. This slow component of interannual variation is more likely to be potentially predictable. How sea surface temperatures are related to the slow components is also considered. The four dominant intraseasonal modes of interannual variability have horizontal structures similar to those seen in both well-known intraseasonal dynamical modes and statistical modes of intraseasonal variability. In particular, they reflect intraseasonal variability in the high latitudes associated with the Southern Annular Mode, and wavenumber 4 (summer) and wavenumber 3 (winter) patterns associated with south Pacific regions of persistent anomalies and blocking, and possibly variability related to the Madden-Julian Oscillation (MJO). The four dominant slow components of interannual variability, in both seasons, are related to high latitude variability associated with the Southern Annular Mode, El Nino Southern Oscillation (ENSO) variability, and South Pacific Wave variability associated with Indian Ocean SSTs. In both seasons, there are strong linear trends in the first slow mode of high latitude variability and these are shown to be related to similar trends in the Indian Ocean. Once these are taken into account there is no significant sea surface temperature forcing of these high latitude modes. The second and third ENSO related slow modes, in each season, have high correlations with tropical sea surface temperature variability in the Pacific and Indian Oceans, both contemporaneously and at one season lag. The fourth slow mode has a characteristic South Pacific wave structure of either a wavenumber 4 (summer) or wavenumber 3 (winter) pattern, with strongest loadings in the South Pacific sector, and an association simultaneously with a dipole SST temperature gradient in the subtropical Indian Ocean.  相似文献   

20.
 The interannual variability over the tropical Pacific and a possible link with the mean state or the seasonal cycle is examined in four coupled ocean-atmosphere general circulation models (GCM). Each model is composed of a high-resolution ocean GCM of either the tropical Pacific or near-global oceans coupled to a moderate-resolution atmospheric GCM, without using flux correction. The oceanic subsurface is considered to describe the mean state or the seasonal cycle through the analytical formulations of some potential coupled processes. These coupled processes characterise the zonal gradient of sea surface temperature (hereafter SST), the oceanic vertical gradient of temperature and the equatorial upwelling. The simulated SST patterns of the mean state and the interannual signals are generally too narrow. The grid of the oceanic model could control the structure of the SST interannual signals while the behaviour of the atmospheric model could be important in the link between the oceanic surface and the subsurface. The first SST EOFs are different between the coupled models, however, the second SST EOFs are quite similar and could correspond to the return to the normal state while that of the observations (COADS) could favour the initial anomaly. All the models seem to simulate a similar equatorial wave-like dynamics to return to the normal state. The more the basic state is unstable from the coupled processes point of view, the more the interannual signal are high. It seems that the basic state could control the intensity of the interannual variability. Two models, which have a significant seasonal variation of the interannual variance, also have a significant seasonal variation of the instability with a few months lag. The potential seasonal phase locking of the interannual fluctuations need to be examined in more models to confirm its existence in current tropical GCMs. Received: 30 July 1999 / Accepted: 25 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号