首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
An X-ray absorption spectroscopy (XAS) study of the Fe local environment in natural amethyst (a variety of α-quartz, SiO2) has been carried out. Room temperature measurements were performed at the Fe K-edge (7,112 eV), at both the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions. Experimental results were then compared with DFT calculations. XANES experimental spectra suggest Fe to occur mainly in the trivalent state, although a fraction of Fe2+ is identified. EXAFS spectra, on the other hand, reveal an unusual short distance for the first coordination shell:  = 1.78(2) Å, the coordination number being 2.7(5). These results allow to establish that Fe replaces Si in its tetrahedral site, and that numerous local distortions are occurring as a consequence of the presence of Fe3+ variably compensated by protons and/or alkaline ions, or uncompensated. The formal valence of Fe, on the basis of both experimental and DFT structural features, can be either 4+ or 3+. Taking into account the XANES evidences, we suggest that Fe mainly occurs in the trivalent state, compensated by protons, and that a minor fraction of Fe4+ is stabilised by the favourable local structural arrangement.  相似文献   

2.
Assessing the ferric-ferrous ratio in magmas prior to eruption remains a challenging task. X-ray absorption near-edge structure (μXANES) spectra were collected at the iron K-edge in water-rich peralkaline silicic melt/glass inclusions trapped in quartz. These experiments were carried out between 800 and 20 °C. The chemical environment of iron was also determined in the naturally quenched samples (glass inclusions and matrix glass) and in the peralkaline rhyolitic reference glasses, with variable [Fe3+ / ∑Fe] ratios.In the reference glasses, both the intensity of the pre-peaks (Fe2+, Fe3+) and site geometry of iron change as the oxidation state increases. Fourfold-coordinated Fe3+ prevails in highly oxidised peralkaline silicic glasses, using alkalis for charge balance. The position of the pre-edge centroid of the 1s-3d transition correlates with the Fe3+ / ΣFe ratios that allowed calibration of the redox state of iron of our natural samples.At high temperatures, Fe2+ dominates in the pre-edge structure of melt inclusions. Upon cooling down to 20 °C, the intensity of the Fe3+ peak increases, the centroid position of the pre-edge features shifts by nearly 0.5 eV and the main edge moves slightly towards higher energies. The slower the cooling rate, the higher the ferric iron contribution. Iterative μXANES experiments performed on the same samples show that the process is reversible. However, this apparent oxidation of iron upon cooling is an artefact of changes in Fe coordination. It implies that the [Fe3+ / ΣFe] ratio of glassy samples, measured at 20 °C, may be overestimated by a factor > 1.7, and that this ratio cannot be reliably retrieved by probing naturally cooled glass inclusions, and most silicate glasses. High temperature μXANES experiments led first to an assessment of the ferric-ferrous ratio in the water-rich peralkaline melt in pre-eruptive magmatic conditions and second to the determination of the corresponding oxygen fugacity at 740 °C.  相似文献   

3.
Fe L-, S L-, and O K-edge X-ray absorption spectra of natural monoclinic and hexagonal pyrrhotites, Fe1-xS, and arsenopyrite, FeAsS, have been measured and compared with the spectra of minerals oxidized in air and treated in aqueous acidic solutions, as well as with the previous XPS studies. The Fe L-edge X-ray absorption near-edge structure (XANES) of vacuum-cleaved pyrrhotites showed the presence of, aside from high-spin Fe2+, small quantity of Fe3+, which was higher for a monoclinic mineral. The spectra of the essentially metal-depleted surfaces produced by the non-oxidative and oxidative acidic leaching of pyrrhotites exhibit substantially enhanced contributions of Fe3+ and a form of high-spin Fe2+ with the energy of the 3d orbitals increased by 0.3–0.8 eV; low-spin Fe2+ was not confidently distinguished, owing probably to its rapid oxidation. The changes in the S L-edge spectra reflect the emergence of Fe3+ and reduced density of S s–Fe 4s antibonding states. The Fe L-edge XANES of arsenopyrite shows almost unsplit eg band of singlet Fe2+ along with minor contributions attributable to high-spin Fe2+ and Fe3+. Iron retains the low-spin state in the sulphur-excessive layer formed by the oxidative leaching in 0.4 M ferric chloride and ferric sulphate acidic solutions. The S L-edge XANES of arsenopyrite leached in the ferric chloride, but not ferric sulphate, solution has considerably decreased pre-edge maxima, indicating the lesser admixture of S s states to Fe 3d orbitals in the reacted surface layer. The ferric nitrate treatment produces Fe3+ species and sulphur in oxidation state between +2 and +4.  相似文献   

4.
The Fe M 2,3-edge spectra of solid solutions of garnets (almandine-skiagite Fe3(Al1–xFex)2[SiO4]3 and andradite-skiagite (Fe1–xCax)3Fe2[SiO4]3), pyroxenes (acmite-hedenbergite (Ca1–xNax)(Fe2+ 1−xFe3+ x)Si2O6), and spinels (magnetite-hercynite Fe(Al1–xFex)2O4) have been measured using the technique of parallel electron energy-loss spectroscopy (EELS) conducted in a transmission electron microscope (TEM). The Fe M 2,3 electron energy-loss near-edge structures (ELNES) of the minerals exhibit a characteristic peak located at 4.2 eV and 2.2 eV for trivalent and divalent iron, respectively, prior to the main maximum at about 57 eV. The intensity and energy of the pre-edge feature varies depending on Fe3+/ΣFe. We demonstrate a new quantitative method to extract the ferrous/ferric ratio in minerals. A systematic relationship between Fe3+/ΣFe and the integral intensity ratio of the main maximum and the pre-edge peak of the Fe M 2,3 edge is observed. Since the partial cross sections of the Fe M 2,3 edges are some orders of magnitude higher than those of the Fe L 2,3 edges, the Fe M 2,3 edges are interesting for valence-specific imaging of Fe. The possibility of iron valence-specific imaging is illustrated by Fe M 2,3-ELNES investigations with high lateral resolution from a sample of ilmenite containing hematite exsolution lamellae that shows different edge shapes consistent with variations in the Fe3+/ΣFe ratio over distances on the order of 100 nm. Received: 14 April 1998 / Revised, accepted: 8 March 1999  相似文献   

5.
We calculated the forsterite Mg K-edge and the fayalite Fe K-edge X-ray absorption spectra both for the M 1 and M 2 sites and for the overall edge by using the one-electron multiple-scattering theory. The validity of the theoretical model is well illustrated by comparison of calculations with experimental data at the Mg K-edge of MgO (periclase) and at the Mg and Fe K-edges spectra of forsterite and fayalite. Starting from these results at room conditions, we calculated the Mg and Fe K-edges X-ray absorption spectra of forsterite and fayalite at low and high temperatures and at high pressures as well. Variations of fine structures occur mostly in the intermediate multiple scattering (IMS) regions and as a result of the applied pressure. In order to demonstrate the capability of XAS to lead to deeper knowledge of structure relevant to Earth's upper mantle we also attempted calcuating the high-P edge for Fe 2+ in low-spin using a different occupation of valence electrons. If a change in spin state really occurs in fayalite, our simple model shows that XAS would evidence it easily even with low resolution.  相似文献   

6.
Sulfur K-edge x-ray absorption spectra (XANES and EXAFS) and L-edge XANES of sphalerite (ZnS), chalcopyrite (CuFeS2) and stannite (Cu2FeSnS4) have been recorded using synchrotron radiation. The K- and L-edge XANES features are interpreted using a qualitative MO/energy band structure model. The densities of unoccupied states at the conduction bands of sphalerite, chalcopyrite and stannite are determined using S K- and L-edge XANES features (up to 15 eV above the edge), combined with published metal K-edge XANES. The SK- and L-edge XANES also indicate that, for sphalerite, the Fe2+ 3d band at the fundamental gap has little or no bonding hybridization with S 3p and S 3s orbitals; for chalcopyrite, the Cu+ 3d and Fe3+ 3d bands have strong mixing with S 3p and S 3s states, while for stannite the Cu+ 3d band strongly hybridizes with S 3p and S 3s orbitals, but the Fe2+ 3d band does not. The post-edge XANES features (15–50 eV above the edge) of sphalerite, chalcopyrite and stannite are similar. These features are related to the tetrahedral coordination of sulfur in all these structures, and interpreted by a multiple scattering model. The resonance energies from both the K-edge and L-edge XANES for these minerals are well correlated with reciprocal interatomic distances and lattice spaces. Sulfur K-edge EXAFS analyses using Fourier transform and curve fitting procedures are presented. Comparison of the structural parameters from EXAFS with x-ray structure data shows that the first shell bond distances (BD) from EXAFS are usually accurate to ±0.02 Å, and that coordination numbers (CN) are generally accurate to ±20 percent. For sphalerite, EXAFS analysis yields the structure parameters for the first three neighbour shells around a sulfur atom; the BD and CN even for the third shell are in close agreement with the x-ray structure, and the Debye-Waller term decreases from the first shell to the third shell. It is shown that sphalerite (ZnS) is a good model compound for EXAFS analysis of sulfur in chalcogenide glasses and metalloproteins.  相似文献   

7.
The Fe L 2,3-edge spectra for a range of natural minerals and synthetic solid solutions have been measured using the technique of parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM). The Fe L 2,3 -edges of the minerals are characterised by two white-line features and exhibit electron energy-loss near-edge structure (ELNES) characteristic of Fe valence state. For divalent iron, the Fe L 3 -edge spectra are dominated by a sharp peak (white-line) at ca. 707.8 eV, followed by a broader and less intense peak at ca. 710.5 eV. The ELNES on the Fe L 3 -edge of trivalent iron consists of a white-line with its maximum at ca. 709.5 eV and a preceeding peak at ca. 708.0 eV. Mineral solid solutions that contain both Fe2+ and Fe3+ exhibit an Fe L 3 -edge shape that is composed of Fe L 3 -edges from the respective Fe2+- and Fe3+-bearing end members. The integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) show clear differences for Fe2+ and Fe3+. We demonstrate the feasibility of quantification of the ferrous/ferric ratio in minerals by determining the integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) as a function of the ferric iron concentration resulting in an universal curve within the experimental errors. The application of the universal curve combined with the high spatial resolution using the PEELS/TEM allows the quantification of the ferric iron concentration on a scale down to 10 nm, which is illustrated from a sample of ilmenite containing hematite exsolution lamellae that shows different Fe L 2,3 -edge shapes consistent with variations in the Fe2+-Fe3+ ratio over distances of ca. 100 nm. Received: 30 July 1997 / Revised, accepted: 26 October 1997  相似文献   

8.
A comparative study of blue and green beryl crystals (from the region of Governador Valadares, Minas Gerais, Brazil) using electron paramagnetic resonance (EPR) and optical absorption (OA) spectroscopy is reported. The EPR spectra show that Fe3+ in blue beryl occupies a substitutional Al3+ site and in green beryl is localized in the structural channels between two O6 planes. On the other hand the infrared spectra show that the alkali content in the blue beryl is mostly at substitutional and/or interstitial sites and in green beryl is mostly in the structural channels. The OA spectra show two types of Fe2+. Thermal treatments above 200° C in green beryl cause the reduction of Fe3+ into Fe2+ accompanied by a change of color to blue. The blue beryl color does not change on heating. The kinetics of the thermal conversion of Fe3+ into Fe2+ is composed of two first order processes; the first one has an activation energy ΔE 1=0.30 eV and the second one has an activation energy ΔE 2=0.46 eV.  相似文献   

9.
The mobility and availability of the toxic metalloid selenium in the environment are largely controlled by sorption and redox reactions, which may proceed at temporal scales similar to that of subsurface water movement under saturated or unsaturated conditions. Since such waters are often anaerobic and rich in Fe2+, we investigated the long-term (?1 month) kinetics of selenite sorption to montmorillonite in the presence of Fe2+ under anoxic conditions. A synthetic montmorillonite was used to eliminate the influence of structural Fe. In the absence of aqueous Fe2+, selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (X-ray absorption near-edge spectroscopy) and EXAFS (extended X-ray absorption fine-structure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as Fe(III) species on edge sites of montmorillonite (≈2 mmol kg−1). The only change observed after addition of Se was the formation of a new Fe(II) species (15%) attributed to the formation of an outer-sphere Fe(II)-Se sorption complex. The combined Mössbauer and XAS results hence clearly suggest that the Se and Fe redox reactions are not directly coupled. Based on the results of a companion paper, we hypothesize that the electrons produced in the absence of Se by oxidation of sorbed Fe(II) are stored, for example by formation of surface H2 species, and are then available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, we derived an average particle size of this precipitate which does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters.  相似文献   

10.
X-ray absorption spectroscopy, including extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) techniques, have been used to determine the structure and speciation of complexes for Fe2+ and Fe3+ chloride solutions at a variety of pH's, ionic strengths, and chloride/iron ratios.Low intensity K-edge transition features and analysis of modified pair correlation functions, derived from Fourier transformation of EXAFS spectra, show a regular octahedral coordination of Fe(II) by water molecules with a first-shell Fe2+-O bond distance, closely matching octahedral Fe2+-O bonds obtained from solid oxide model compounds. Solution Fe2+-O bond distances decrease with chloride/iron ratio, pH, and total FeCl2 concentration. A slight intensification of the 1s → 3d transition with increasing FeCl2 concentration suggests that chloride may begin to mix with water as a nearest-neighbor octahedral ligand. Fe3+ solutions show a pronounced increase in the 1s → 3d transition intensities between 1.0 M FeCl3/7.8 M Cl? to 1.0 M FeCl3/ 15 M Cl?, indicating a coordination change from octahedral to tetrahedral complexes. EXAFS analyses of these solutions show an increase in first-shell Fe3+-ligand distances despite this apparent reduction in coordination number. This can be best explained by a change from regular octahedral complexes of ferric iron (either Fe(H2O)63+ or trans-Fe(H2O)4Cl2 or both; Fe3+-O bond distances of 2.10 Å) to tetra-chloro complexes [Fe3+-Cl bond distances of 2.25 Å].  相似文献   

11.
Two polycrystalline-, Fe-bearing MgSiO3 enstatite and perovskite have been probed by x-ray absorption near edge structure (XANES) spectroscopy at the Fe K-edge under ambient conditions. The perovskite sample was synthesized at 260 kbar and 1973 K in a multianvil apparatus. The experimental XANES spectrum has been compared to ab-initio-, x-ray multiple-scattering calculations (Feff 6 code). Calculations confirm that the Fe K-edge arises mainly from multiple scattering involving the first shell of oxygen neighbors around Fe. In Fe-enstatite, these calculations are consistent with Fe2+ as substituted in the M2 site of this orthopyroxene, in good agreement with crystal structure refinements and previous XANES studies. In perovskite, Feff 6 suggests that Fe is likely to be substituted to Mg within the (8+4)-coordinated sites of that perovskite. No evidences for 6-coordinated Fe were found. These results are consistent with a previous anharmonic analysis of the extended x-ray absorption fine structure (EXAFS) study that evidenced the presence of 8-coordinated Fe in the same perovskite sample.  相似文献   

12.
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO 4 4? cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.  相似文献   

13.
(Mg,Fe)(Si,Al)O3 perovskite samples with varying Fe and Al concentration were synthesised at high pressure and temperature at varying conditions of oxygen fugacity using a multianvil press, and were characterised using ex?situ X-ray diffraction, electron microprobe, Mössbauer spectroscopy and analytical transmission electron microscopy. The Fe3+/ΣFe ratio was determined from Mössbauer spectra recorded at 293 and 80?K, and shows a nearly linear dependence of Fe3+/ΣFe with Al composition of (Mg,Fe)(Si,Al)O3 perovskite. The Fe3+/ΣFe values were obtained for selected samples of (Mg,Fe)(Si,Al)O3 perovskite using electron energy-loss near-edge structure (ELNES) spectroscopy, and are in excellent agreement with Mössbauer data, demonstrating that Fe3+/ΣFe can be determined with a spatial resolution on the order of nm. Oxygen concentrations were determined by combining bulk chemical data with Fe3+/ΣFe data determined by Mössbauer spectroscopy, and show a significant concentration of oxygen vacancies in (Mg,Fe)(Si,Al)O3 perovskite.  相似文献   

14.
We have made use of the nearly complete linear polarization of synchrotron radiation to study the polarization dependence of X-ray absorption near-edge structure (XANES) and extended fine structure (EXAFS) in oriented single crystals of gillespite (BaFe2+ Si4O10; Fe2 + in square-planar coordination, point symmetry C 4), anatase (TiO2; Ti4+ in octahedral coordination, point symmetry D 2d), and epidote (Ca2(Al, Fe3+)3SiO4)3(OH); Fe3+ in distorted octahedral coordination, point symmetry (C s). For gillespite, the Fe K-XANES spectrum varies strongly with E-vector orientation of the incident X-ray beam. When the E-vector lies in the plane of the FeO4 group (i.e., perpendicular to the c-axis), multiple-scattering features at 7127 and 7131 eV intensify, whereas when the E-vector is perpendicular to the plane of the FeO4 group (i.e., parallel to the c-axis), a strongly-polarized 1s to 4p bound state transition occurs at 7116 eV and a localized continuum resonance occurs at 7122 eV. The Fe-K-EXAFS spectrum of gillespite is also highly polarization dependent. When the E-vector is perpendicular to c, all four nearest-neighbor oxygens around Fe2+ contribute to the EXAFS signal; when E is parallel to c, the EXAFS signal from nearest-neighbors is reduced by at least 86%. The unpolarized Ti K-XANES spectrum of anatase has three relatively strong pre-edge features at 4967.1, 4969.9, and 4972.7 eV which have resisted definitive interpretation in past studies. The lowest energy feature has a strong xy polarization dependence, suggesting a large amount of 4p x,y character, and it is also very sharp, indicating a well-defined transition energy. Both of these observations are consistent with an excitonic state with a binding energy of 2.8 eV. The two higher energy features, which are characteristic of octahedrally-coordinated Ti4+, show little polarization dependence and are probably due to 1s to 3d bound-state transitions, with a small degree of np character in the final state wavefunction. Interpretation of the polarization dependence of Fe K-XANES spectra for epidote is not as straightforward due to the lower space group symmetry (P21/m) relative to gillespite (P4/ncc) and anatase (I41/amd) and the lower point group symmetry (C s) of the M(3) site which contains most of the Fe3+ in the epidote structure. However, the presence of a shoulder at 7121 eV in the E parallel to b spectrum and its absence in the E normal to bc spectrum are consistent with it being a 1s to 4p z bound-state transition. Strong, weakly x, y polarized features near 7126 eV in both spectra are most likely due to localized continuum transitions. Also, the 1s to 3d pre-edge intensity varies in intensity with E-vector orientation which is consistent with displacement of Fe3+ from the center of the M(3) octahedral site. Analysis of EXAFS spectra of epidote in these two polarizations yields bond distances which are within 0.04 Å of previous single-crystal X-ray diffraction analysis. This study demonstrates the utility of polarized X-ray absorption spectroscopy in quantifying the energies and orbital compositions of final state wavefunctions associated with various X-ray induced transitions in transition-metal containing minerals. It also shows that reasonably accurate M-O distances can be obtained for individual bonds oriented in crystallographically non-equivalent directions.  相似文献   

15.
In northern Saskatchewan, Canada, high-grade U ores and the resulting tailings can contain high levels of As. An environmental concern in the U mining industry is the long-term stability of As within tailings management facilities (TMFs) and its potential transfer to the surrounding groundwater. To mitigate this problem, U mill effluents are neutralized with lime to reduce the aqueous concentration of As. This results in the formation of predominantly Fe3+–As5+ secondary mineral phases, which act as solubility controls on the As in the tailings discharged to the TMF. Because the speciation of As in natural systems is critical for determining its long-term environmental fate, characterization of As-bearing mineral phases and complexes within the deposited tailings is required to evaluate its potential transformation, solubility, and long-term stability within the tailings mass. In this study, synchrotron-based bulk X-ray absorption spectroscopy (XAS) was used to study the speciation of As and Fe in mine tailings samples obtained from the Deilmann TMF at Key Lake, Saskatchewan. Comparisons of K-edge X-ray absorption spectra of tailings samples and reference compounds indicate the dominant oxidation states of As and Fe in the mine tailings samples are +5 and +3, respectively, largely reflecting their generation in a highly oxic mill process, deposition in an oxidized environment, and complexation within stable oxic phases. Linear combination fit analyses of the K-edges for the Fe X-ray absorption near edge spectra (XANES) to reference compounds suggest Fe is predominantly present as ferrihydrite with some amount of the primary minerals pyrite (8–15% in some samples) and chalcopyrite (5–15% in some samples). Extended X-ray absorption fine structure (EXAFS) analysis of As K-edge spectra indicates that As5+ (arsenate) present in tailings samples is adsorbed to the ferrihydrite though an inner-sphere bidentate linkage.  相似文献   

16.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

17.
Experimental investigations have been performed at T = 1200°C, P = 200 MPa and fH2 corresponding to H2O-MnO-Mn3O4 and H2O-QFM redox buffers to study the effect of H2O activity on the oxidation and structural state of Fe in an iron-rich basaltic melt. The analysis of Mössbauer and Fe K-edge X-ray absorption nearedge structure (XANES) spectra of the quenched hydrous ferrobasaltic glasses shows that the Fe3+/ΣFe ratio of the glass is directly related to aH2O in a H2-buffered system and, consequently, to the prevailing oxygen fugacity (through the reaction of water dissociation H2O ↔ H2 + 1/2 O2). However, water as a chemical component of the silicate melt has an indistinguishable effect on the redox state of iron at studied conditions. The experimentally obtained relationship between fO2 and Fe3+/Fe2+ in the hydrous ferrobasaltic melt can be adequately predicted in the investigated range by the existing empiric and thermodynamic models. The ratio of ferric and ferrous Fe is proportional to the oxygen fugacity to the power of ∼0.25 which agrees with the theoretical value from the stoichiometry of the Fe redox reaction (FeO + ¼ O2 = FeO1.5). The mean centre shifts for Fe2+ and Fe3+ absorption doublets in Mössbauer spectra show little change with increasing Fe3+/ΣFe, suggesting no significant change in the type of iron coordination. Similarly, XANES preedge spectra indicate a mixed (C3h, Td, and Oh, i.e., 5-, 4-, and sixfold) coordination of Fe in hydrous basaltic glasses.  相似文献   

18.
Parallel electron energy-loss spectroscopy (PEELS) in a scanning transmission electron microscope (STEM) was used to record the Mn L2,3-edges from a range of natural and synthetic manganese containing materials, covering valences 0, II, III, IV and VII, with an energy resolution of ca. 0.5 eV. The Mn L2,3 electron-loss near-edge structure (ELNES) of these edges provided a sensitive fingerprint of its valence. The Mn2+ L2,3-edges show little sensitivity to the local site symmetry of the ligands surrounding the manganese. This is illustrated by comparing the Mn L2,3-edges from 4-, 6- and 8-fold coordinated Mn2+. In contrast, the Mn L3-edges from Mn3+ and Mn4+ containing minerals exhibited ELNES that are interpreted in terms of a crystal-field splitting of the 3d electrons, governed by the symmetry of the surrounding ligands. The Mn L3-edges for octahedrally coordinated Mn2+, Mn3+ and Mn4+ showed variations in their ELNES that were sensitive to the crystal-field strength. The crystal-field strength (10Dq) was measured from these edges and compared very well with published optically determined values. The magnitude of 10Dq measured from the Mn L3-edges and their O K-edge prepeaks of the manganese oxides were almost identical. This further confirms that the value of 10Dq measured at the Mn L3-edge is correct. Selected spectra are compared with theoretical 2p atomic multiplet spectra and the differences and similarities are explained in terms of the covalency and site symmetry of the manganese. The Mn L3-edges allow the valence of the manganese to be ascertained, even in multivalent state materials, and can also be used to determine 10Dq.  相似文献   

19.
A combined polarized optical absorption and 57Fe Mössbauer spectroscopy study of inhomogeneous, Fe and Ti-bearing terrestrial hibonite (Madagascar) has been carried out. Mössbauer data were also obtained on synthetic material prepared under different fo2 inconditions. A strong band at 5400 cm-1 in the near-infrared spectra is attributed to spin-allowed d-d transitions of Fe2+ occupying tetrahedral sites within the spinel blocks of the hibonite crystal structure. There is agreement with the Mössbauer results, showing that ferrous iron orders onto a single, low-coordinated crystallographic site. Ferric iron is distributed over several positions, but shows strongest preference for the large bipyramidal site located outside the spinel blocks. The colour and pleochroism of hibonite in thin section is related to a prominent UV absorption edge, and several broad absorption bands in the visible spectrum ascribed to charge-transfer transitions involving Fe2+, Fe3+ and Ti4+.  相似文献   

20.
Electrical resistivity and 57Fe Mössbauer spectra are reported for three calcic amphiboles with different Fe concentrations. AC measurements (20?Hz–1?MHz) were performed, applying impedance spectroscopy between 100 and 785?°C in an N2 gas atmosphere. It was found that up to three semiconducting charge transport processes can be distinguished, which in part changed slightly when several runs were carried out to higher temperatures. The extrapolated DC resistivity is much smaller for an amphibole with high Fe content than for the two with lower Fe concentrations. The derived activation energies are between ~0.48 and ~1.06?eV. For temperatures ≤600?°C the results are compatible with a charge transport mechanism due to electron hopping between Fe2+ and Fe3+. Above 600?°C, dehydrogenation and/or beginning amphibole decomposition obviously alter the conduction mechanism. From Mössbauer spectra it was established that in all amphibole samples Fe2+ and Fe3+ are simultaneously present. Mössbauer parameters were derived by fitting the observed spectra to models taking the occupation of various M sites into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号