首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several families of the planar general three-body problem for fixed values of the three masses are found, in a rotating frame of reference, where the mass of two of the bodies is small compared to the mass of the third body. These families were obtained by the continuation of a degenerate family of periodic orbits of three bodies where two of the bodies have zero masses and describe circular orbits around a third body with finite mass, in the same direction.The above families represent planetary systems with the body with the large mass representing the Sun and the two small bodies representing two planets or comets. One section of a family is shown to represent the Jupiter family of comets and also a model for the Sun-Jupiter-Saturn system is found.The stability analysis revealed that stability exists for small masses and small eccentricities of the two planets. Planetary systems with relatively large masses and eccentricities are proved to be unstable. In particular, the Jupiter family of comets, for small masses of the two small bodies, and the Sun-Jupiter-Saturn system are proved to be stable. Also, it was shown that resonances are not necessarily associated with instabilities.  相似文献   

2.
In this paper, families of simple symmetric and non-symmetric periodic orbits in the restricted four-body problem are presented. Three bodies of masses m 1, m 2 and m 3 (primaries) lie always at the apices of an equilateral triangle, while each moves in circle about the center of mass of the system fixed at the origin of the coordinate system. A massless fourth body is moving under the Newtonian gravitational attraction of the primaries. The fourth body does not affect the motion of the three bodies. We investigate the evolution of these families and we study their linear stability in three cases, i.e. when the three primary bodies are equal, when two primaries are equal and finally when we have three unequal masses. Series, with respect to the mass m 3, of critical periodic orbits as well as horizontal and vertical-critical periodic orbits of each family and in any case of the mass parameters are also calculated.  相似文献   

3.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

4.
We study the dynamics of 3:1 resonant motion for planetary systems with two planets, based on the model of the general planar three body problem. The exact mean motion resonance corresponds to periodic motion (in a rotating frame) and the basic families of symmetric and asymmetric periodic orbits are computed. Four symmetric families bifurcate from the family of circular orbits of the two planets. Asymmetric families bifurcate from the symmetric families, at the critical points, where the stability character changes. There exist also asymmetric families that are independent of the above mentioned families. Bounded librations exist close to the stable periodic orbits. Therefore, such periodic orbits (symmetric or asymmetric) determine the possible stable configurations of a 3:1 resonant planetary system, even if the orbits of the two planets intersect. For the masses of the system 55Cnc most of the periodic orbits are unstable and they are associated with chaotic motion. There exist however stable symmetric and asymmetric orbits, corresponding to regular trajectories along which the critical angles librate. The 55Cnc extra-solar system is located in a stable domain of the phase space, centered at an asymmetric periodic orbit.  相似文献   

5.
In this paper the existence of families of symmetric periodic orbits in the rectilinear three body problem with the middle mass much larger than the masses on the outside is rigorously established. A number of these families are continued numerically and their stability properties as orbits of the planar general problem of three bodies are studied.  相似文献   

6.
The famous three-body problem can be traced back to Newton in 1687, but quite few families of periodic orbits were found in 300 years thereafter. In this paper, we propose an effective approach and roadmap to numerically gain planar periodic orbits of three-body systems with arbitrary masses by means of machine learning based on an artificial neural network (ANN) model. Given any a known periodic orbit as a starting point, this approach can provide more and more periodic orbits (of the same family name) with variable masses, while the mass domain having periodic orbits becomes larger and larger, and the ANN model becomes wiser and wiser. Finally we have an ANN model trained by means of all obtained periodic orbits of the same family, which provides a convenient way to give accurate enough predictions of periodic orbits with arbitrary masses for physicists and astronomers. It suggests that the high-performance computer and artificial intelligence (including machine learning) should be the key to gain periodic orbits of the famous three-body problem.  相似文献   

7.
We present some results of a numerical exploration of the rectilinear problem of three bodies, with the two outer masses equal. The equations of motion are first given in relative coordinates and in regularized variables, removing both binary collision singularities in a single coordinate transformation. Among our most important results are seven periodic solutions and three symmetric triple collision solutions. Two of these periodic solutions have been continued into families, the outer massm 3 being the family parameter. One of these families exists for all masses while the second family is a branch of the first at a second-kind critical orbit. This last family ends in a triple collision orbit.Proceedings of the Sixth Conference on Mathematical Methods in Celestial Mechanics held at Oberwolfach (West Germany) from 14 to 19 August, 1978.  相似文献   

8.
This paper studies the asymmetric solutions of the restricted planar problem of three bodies, two of which are finite, moving in circular orbits around their center of masses, while the third is infinitesimal. We explore, numerically, the families of asymmetric simple-periodic orbits which bifurcate from the basic families of symmetric periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the families c, a and b which emanate from the collinear equilibrium points L 1, L 2 and L 3 correspondingly. The evolution of these asymmetric families covering the entire range of the mass parameter of the problem is presented. We found that some symmetric families have only one bifurcating asymmetric family, others have infinity number of asymmetric families associated with them and others have not branching asymmetric families at all, as the mass parameter varies. The network of the symmetric families and the branching asymmetric families from them when the primaries are equal, when the left primary body is three times bigger than the right one and for the Earth–Moon case, is presented. Minimum and maximum values of the mass parameter of the series of critical symmetric periodic orbits are given. In order to avoid the singularity due to binary collisions between the third body and one of the primaries, we regularize the equations of motion of the problem using the Levi-Civita transformations.  相似文献   

9.
We present some families of horseshoe periodic orbits in the general planar three-body problem for the case of two equal masses. The considered system is a symmetric version of the one formed by Saturn, Janus and Epimetheus. We use a mass ratio equal to 35×10−5, corresponding to 105 times the Saturn-Janus mass parameter of the restricted case; for this mass ratio the satellites have a significantly bigger influence on the planet than in the classical Saturn, Janus and Epimetheus system. To obtain periodic orbits, we search those horseshoe orbits passing through two reversible configurations. A particular kind of periodic orbits where the minor bodies follow the same path is discussed.  相似文献   

10.
The planar isosceles three-body problem where the two symmetric bodies have small masses is considered as a perturbation of the Kepler problem. We prove that the circular orbits can be continued to saddle orbits of the Isosceles problem. This continuation is not possible in the elliptic case. Their perturbed orbits tend to a continued circular one or approach a triple collision. The basic tool used is the study of the Poincaré maps associated with the periodic solutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We analytically prove the existence of a symmetric periodic simultaneous binary collision orbit in a regularized planar pairwise symmetric equal mass four-body problem. This is an extension of our previous proof of the analytic existence of a symmetric periodic simultaneous binary collision orbit in a regularized planar fully symmetric equal mass four-body problem. We then use a continuation method to numerically find symmetric periodic simultaneous binary collision orbits in a regularized planar pairwise symmetric 1, m, 1, m four-body problem for m between 0 and 1. Numerical estimates of the the characteristic multipliers show that these periodic orbits are linearly stability when 0.54 ≤ m ≤ 1, and are linearly unstable when 0 < m ≤ 0.53.  相似文献   

12.
A periodic orbit of the restricted circular three-body problem, selected arbitrarily, is used to generate a family of periodic motions in the general three-body problem in a rotating frame of reference, by varying the massm 3 of the third body. This family is continued numerically up to a maximum value of the mass of the originally small body, which corresponds to a mass ratiom 1:m 2:m 3?5:5:3. From that point on the family continues for decreasing massesm 3 until this mass becomes again equal to zero. It turns out that this final orbit of the family is a periodic orbit of the elliptic restricted three body problem. These results indicate clearly that families of periodic motions of the three-body problem exist for fixed values of the three masses, since this continuation can be applied to all members of a family of periodic orbits of the restricted three-body problem. It is also indicated that the periodic orbits of the circular restricted problem can be linked with the periodic orbits of the elliptic three-body problem through periodic orbits of the general three-body problem.  相似文献   

13.
The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh’s critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.  相似文献   

14.
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.  相似文献   

15.
Periodic Orbits of a Collinear Restricted Three-Body Problem   总被引:6,自引:0,他引:6  
In this paper we study symmetric periodic orbits of a collinear restricted three-body problem, when the middle mass is the largest one. These symmetric periodic orbits are obtained from analytic continuation of symmetric periodic orbits of two collinear two-body problems.  相似文献   

16.
We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n-1), (3:1, 5:3, ...) and (3) all other resonances. The topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.  相似文献   

17.
《Icarus》1986,66(3):536-555
We study numerically the interaction of two small satellites, initially on circular orbits with slightly different radii. We show first that by going to Hill's limit of vanishing masses, one can reduce the problem to a simpler form in which only one dimensionless parameter remains: the reduced impact parameter. We present then a detailed study of the family obtained when this parameter is varied. Each orbit consists of three phases: approach of the two small bodies, interplay, and departure. Fourth-order series are used to represent the asymptotic motion of the two small bodies in the approach and departure phases; these series are matched with a numerical integration of the interplay phase to give an accurate representation of the entire orbit. For each orbit, we compute the net effect of the encounter, essentially characterized by an increase of the separation of the satellite orbits. We compute also the minimal distance of approach of the two satellites. In the limiting cases of large and small impact parameters, the results are compared with the predictions of perturbation theories. Finally we study the “transitions,” which are apparent discontinuities of the family with a sudden change of the direction of departure. We show that they can be explained by the asymptotic approach of the orbit to an unstable periodic solution of Hill's problem. Transitions take place for infinitely many values of the parameter, forming a Cantor-like set.  相似文献   

18.
A new family of periodic orbits for the restricted problem   总被引:1,自引:0,他引:1  
A new family of periodic orbits of the three-dimensional restricted three-body problem which continue off from a consecutive collision orbit are numerically studied. Their behavior for varying energy is unexpected. In particular, associated with our system is a countable set of resonant energy values and each time the energy passes through one of them the periodic orbit forms a loop by self-intersection. Any number of loops can form by this process and the resulting orbits take on an interesting appearance.  相似文献   

19.
Stability of interplay motions   总被引:2,自引:2,他引:0  
A family of rectilinear periodic solutions of the three-body problem, in which the central body collides alternately with each of the two other bodies, is investigated numerically for all values of the three masses. It is found that for every mass combination there exists just one solution of this kind. The linear stability of the orbits with respect to arbitrary three-dimensional perturbations is also investigated. Domains of stability and instability are displayed in a triangular mass diagram. Their boundaries form one-parameter families of critical orbits, which are tabulated. Limiting cases where one or two masses vanish are studied in detail. The domains of stability cover nearly one half of the total area in the mass diagram: this reinforces the conclusion that real triple stars might have motions of a kind entirely different from the usual hierarchical arrangement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号