首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a possible extension of recent work we study the following version of the inverse problem in dynamics: Given a two-parametric familyf(x, y, b)=c of plane curves, find an autonomous dynamical system for which these curves are orbits.We derive a new linear partial differential equation of the first order for the force componentsX(x, y) andY(x, y) corresponding to the given family. With the aid of this equation we find that, depending on the given functionf, the problem may or may not have a solution. Based on given criteria, we present a full classification of the various cases which may arise.  相似文献   

2.
The three dimensional inverse problem for a material point of unit mass, moving in an autonomous conservative field, is solved. Given a two-parametric family of space curvesf(x, y, z)=c 1,g(x, y, z)=c 2, it is shown that, in general, no potentialU=U(x, y, z) exists which can give rise to this family. However, if the given functionsf(x, y, z) andg(x, y, z) satisfy certain conditions, the corresponding potentialU(x, y, z), as well as the total energyE=E(f, g) are determined uniquely, apart from a multiplicative and an additive constant.  相似文献   

3.
It is assumed that the dynamical system can be represented by equations of the form $$\begin{gathered} \dot x = \varepsilon _i f_i (x,y) \hfill \\ \dot y = u(x,y) + \varepsilon _i g_i (x,y) \hfill \\ \end{gathered} $$ as this is the case for the Lagrange equations in celestial mechanics. The perturbation functionsf i andg i may also depend on the timet. The fast angular variabley is now taken as independent variable. Using perturbation theory and expanding in Taylor series the differential equations for the zeroth, first, second, ... order approximations are obtained. In the stroboscopic method in particular the integration is performed analytically over one revolution, say from perigee to perigee. By the rectification step applied tox andt, the initial values for the next revolution are obtained. It is shown how the second order terms can be determined for the various perturbations occurring in satellite theory. The solution constructed in this way remains valid for thousands of revolutions. An important feature of the method is the small amount of computing time needed compared with numerical integration.  相似文献   

4.
Szebehely's partial differential equation for the force functionU=U(x,y) which gives rise to a given family of planar orbitsf(x,y)=Constant is generalized to account for velocity-dependent potentials V*=V*(x,y, ). The new partial differential equation is quasi-linear and of the first order. An example is given and a comparison is made of the two equations.  相似文献   

5.
A two degree-of-freedom, conservative system is reduced to a single degree-of-freedom, kinematic system with Hamiltonian integral under the change of independent variable: $$dt = \zeta dt (\zeta = \upsilon _x - \upsilon _y )$$ where ζ is the curl (or vorticity) of the velocity field with cartesian inertial componentsu(x, y, t) andv(x, y, t). In the autonomous case whenu t=v t=0, orbits are globally represented by the level curves of an autonomous Hamiltonian functionH(x,y) satisfying a second-order quasilinear partial differential equation (Szebehely's Equation): $$2(H + U)\left( {H_{xx} H_y^2 - 2H_{xy} H_x H_y + H_{yy} H_x^2 } \right) + (H_x U_x + H_y U_y )\left( {H_x^2 + H_y^2 } \right) = 0$$ whereU(x, y) is the autonomous potential function. An inversion of dependent and independent variables reduces this equation to a second-order, ordinary differential equation for a function specifying the orbital curve. The true time variable is recovered by evaluating a quadrature. Fundamental differences exist between this approach and Hamilton-Jacobi theory.  相似文献   

6.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

7.
Das Gupta represented theH-functions of transport problems for the albedo [0, 1] in the formH(z)=R(z)–S(z) (see Das Gupta, 1977) whereR(z) is a rational function ofz andS(z) is regular on [–1, 0] c . In this paper we have representedS(z) through a Fredholm integral equation of the second kind with a symmetric real kernelL(y, z) as . The problem is then solved as an eigenvalue problem. The kernel is converted into a degenerate kernel through finite Taylor's expansion and the integral equation forS(z) takes the form: (which is solved by the usual procedure) where r 's are the discrete eigenvalues andF r 's the corresponding eigenfunctions of the real symmetric kernelL(y, z).  相似文献   

8.
For monoparametric familiesf(x,y)=c of planar orbits, created by a planar potentialV(x,y), we introduce the notion of the family boundary curves (FBC). All members of the familyf(x,y)=c are traced in an allowable region of thexy plane, defined by the corresponding FBC, with total energyE=E(c) varying along the family. Family boundary curves are also found for two-parametric familiesf(x,y,b)=c. The relation of equilibrium points and asymptotic orbits, possibly possessed by the potentialV(x,y), to be FBC is studied.  相似文献   

9.
10.
Finite amplitude convection in the presence of a horizontal magnetic field has been investigated in a region where thermal diffusivity (κ) is less than magnetic diffusivity (η) and whenκ/η > 1,QQ c, where $$Q_c = \frac{{(1 + \sigma _1 )(\pi ^2 + q_c^2 )^2 }}{{q_c^2 (\sigma _2 - \sigma _1 )}}$$ ,Q is the Chandrasekhar number,σ 1 the Prandtl number,σ 2 the magnetic Prandtl number, andq c the critical wave number at the onset of stationary convection. We have derived a nonlinear time-dependent Landau—Ginzburg equation near the onset of supercritical stationary convection and a nonlinear, second-order equation at the Takens—Bogdanov bifurcation. We have obtained steady-state solutions of these equations, which describe the nonlinear behaviour near the onset of stationary convection.  相似文献   

11.
Two-charged bodiesM 1 andM 2 revolve round their centre of mass in circular orbits under Newton's inverse-square law and the so similar Coulomb's law. A third-charged-bodyM, without mass and charge (i.e., such that it is attracted or repulsed byM 1 andM 2, but does not influence their motion), moves in a field with a force function, namely $$U = {\text{ }}\frac{{q - \mu }}{{r_1 }}{\text{ }} + {\text{ }}\frac{{\mu - q}}{{r_2 }}$$ , which is created byM 1 andM 2. In what follows, the existence and location of the collinear and equilateral Lagrangian points or solutions with be discussed and the interpretation of them will be given. This work is a generalization of the classical restricted circular three-body problem.  相似文献   

12.
Expected characteristics of RR Lyrae stars as a function of the evolutive parameters are reported. Results from both evolutionary and pulsational investigations are collected in a suitable form, to show the general constraints to any interpretative analysis of the observations. It is shown that the spread in luminosity among the RR Lyrae stars results a function of the original chemical composition. On this basis a set of independent indications is found, suggesting that the globular cluster ω Cen is more He-rich than M 3; agreement with the whole observational frame is attained ifY ωCen~0.35,Z ωCen~5×10?4 andY M3~0.25,Z M3~10?3. No mass loss is needed to account for the RR Lyrae stars observed in ω Cen. The results are discussed, and it is shown that M 13-type clusters can be just characterized by a larger value ofZ in comparison with ω Cen. It is suggested that variations in the original helium content of the order of ΔY~0.1 and a correlationZ=Z(t) can account for some well-observed galactic globular clusters, without allowing for mass loss in the redder HB stars belonging to each cluster.  相似文献   

13.
In the previous years, p-mode oscillations (pressure oscillations stochastically excited by convection) have been detected in several solar-like stars thanks to the ground-based spectroscopic and space spectroscopic and photometric observations. We study the importance of seismic constraints on stellar modeling and the impact of their accuracy on reducing the uncertainties of global stellar parameters (i.e. mass, age, etc.). We use the Singular Value Decomposition (SVD) method to analyze the sensitivity of stellar models to seismic constraints. In this context, we construct a grid of evolutionary sequences for solar-like stars with varying age and mass. Around each model of this grid, we evaluate the partial derivatives with respect to a large set of free parameters: mass ?, age τ, mixing-length parameter α, initial helium abundance Y 0, and initial metallicity Z/X 0. Masses between 0.9 and 1.55 M and central hydrogen abundances from Xc=0.7 to 0.05 have been considered in this study.  相似文献   

14.
15.
Analysis of observational data of OB stars show an, excellent agreement of the density distributions in space ?(x, y, z) as well as in velocity space \(\rho (\dot x,\dot y,\dot z)\) with the predictions of the density wave theory, the values for the density and velocity fluctuations are explained only by the non-linear theory. These theoretical calculations predict perturbations greater than ±10 km s?1, consistent with the observations for the velocity field. Thus one should disregard analytical treatments of the linearized equations since they predict maximum perturbations of ±5km s?1. Another consequence of this is the fact that the Gould's Belt is not a local anomaly, but a local feature of the density waves. The analysis of observational data show that the wave pattern is similar to that of the gas and dust.  相似文献   

16.
The projection of an axially symmetric satellite's orbit on a plane perpendicular to the rotation axis (z=const.) is given by the second-order differential equation. $$\frac{{y''}}{{1 + y'^2 }} = \bar \Psi _y - y'\bar \Psi _{x,}$$ where the prime denotes the derivative with respect tox and \(\bar \Psi (x,y)\) is a known function. Two integrability cases have been investigated and it has been shown that for these two cases the integration can be carried out either by quadratures or reduced to a first-order differential equation. Analytical and physical properties are expressed, and it is shown that the equation can be derived from the calssical plane eikonal equation of geometric optics.  相似文献   

17.
In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Λ, “but” taking into account the effects of a “c-variable” into the curvature tensor. We study the model under the assumption, div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on ( c(t)dt). Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that c is a growing time function and Λ is a decreasing time function whose sing depends on the equation of state ω, while the exponents of the scale factor must satisfy the conditions ∑ i=1 3 α i =1 and ∑ i=1 3 α i 2 <1, ? ω, i.e. for all equation of state, relaxing in this way the Kasner conditions. The behavior of G depends on two parameters, the equation of state ω and ε, a parameter that controls the behavior of c(t), therefore G may be growing or decreasing. We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a c-var affecting to the curvature tensor which the other one where it is not considered such effects. Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.  相似文献   

18.
The stellar equilibrium equations for given surface pressureP * and temperatureT *, and in the absence of convection, are translated into a nonlinear integral equation, in which the radiusR of the star enters as an eigenvalue. We show that under broad mathematical assumptions on the constitutive equations (equation of state, opacity and energy generation) a global existence and uniqueness property can be formulated. If a valueP M is selected, which restricts the allowed pressure and temperature range |P(r)P *|+E|T(r)T *P M (E, arbitrary constant of dimensions of a pressure over temperature), thenat least one solutionP(r),T(r) exists in the pressure-temperature range chosen, for anyR<R E . This solution isunique forR<R c .R E andR c are expressed in terms of the constitutive equations, and of the pressure-temperature range adopted. A physical argument in favour of the stability of this solution is presented.  相似文献   

19.
A general algorithm for the determination ofT j (n) andZ j *(n) is deduced. This algorithm is obtained from the general solution of non-homogeneous linear differential equations with variable coefficients in their matricial form. To do this a new functionX *(n) associated withZ *(n) is introduced. Then it is possible to calculateZ *(n) such that it contains secular or mixed secular terms and soT (n) is free from these terms.  相似文献   

20.
It is shown here that many problems of libration in celestial mechanics can be reduced to a perturbation of anintermediary defined by the Hamiltonian $$F = B\left( y \right) + 2\mu ^2 A\left( y \right)f\left( x \right).$$ This generalization of the Ideal Resonance Problem, with a periodic functionf(x) replacing sin2 x, is solved here toO(μ 2) by an algorithm that is essentially the same as the one used in the original formulation. The solution is of the formx=x(u), u=u(t), y=y(x), with the functionx(u) commonly involving the inversion of a hyperelliptic integralu(x), evaluated by quadrature. Libration may be simple or multiple, depending on the nature of the functionf(x) and on the initial conditions. Double libration is illustrated here by the horseshoe-shaped orbits enclosing two libration centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号