首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
We derive an analytical model of soil-gas contamination sparged into an imlined unsaturated zone. A nonaqueous phase liquid (NAPL) source lies in the capillary fringe, with an exponential sparge constant within the radius of influence and a constant ambient evaporation rate beyond. Advection, diffusion, and dispersion govern the conservative soil-gas response, expressed as a quasi-steady series solution with radial Bessel and hyperbolic vertical dependence. Simulations suggest that sparged contamination initially spreads beyond the radius of influence down a negative gradient. This gradient eventually reverses, leading to a subsequent influx of ambient contamination. Soil-gas concentrations accordingly reflect slowly varying source conditions as well as slowly varying diffusive transport through the radius of influence. The two time scales are independent: One depends on NAPL, airflow, and capillary fringe characteristics, the other on soil moisture, gaseous diffusivity, and unsaturated zone thickness. The influx of ambient contamination generates an asymptotic soil-gas concentration much less than the initial source concentration. The simple model is applied to a pilot-scale sparging study at Plattsburgh Air Force Base in upstate New York, with physically plausible results.  相似文献   

5.
6.
7.
Recent increases in the use of hydraulic fracturing (HF) to aid extraction of oil and gas from black shales have raised concerns regarding potential environmental effects associated with predictions of upward migration of HF fluid and brine. Some recent studies have suggested that such upward migration can be large and that timescales for migration can be as short as a few years. In this article, we discuss the physical constraints on upward fluid migration from black shales (e.g., the Marcellus, Bakken, and Eagle Ford) to shallow aquifers, taking into account the potential changes to the subsurface brought about by HF. Our review of the literature indicates that HF affects a very limited portion of the entire thickness of the overlying bedrock and therefore, is unable to create direct hydraulic communication between black shales and shallow aquifers via induced fractures. As a result, upward migration of HF fluid and brine is controlled by preexisting hydraulic gradients and bedrock permeability. We show that in cases where there is an upward gradient, permeability is low, upward flow rates are low, and mean travel times are long (often >106 years). Consequently, the recently proposed rapid upward migration of brine and HF fluid, predicted to occur as a result of increased HF activity, does not appear to be physically plausible. Unrealistically high estimates of upward flow are the result of invalid assumptions about HF and the hydrogeology of sedimentary basins.  相似文献   

8.
Gasoline constituents were detected in unsaturated soil and rock during abandonment of a leaky underground storage tank (UST). The unsaturated sequence beneath the former UST consists of 90 feet of silty till, fractured dolomite, and friable sand-stone. Pore gas probes were installed in each of the unsaturated units, both in the source area and in a background on-site location. Pore gas samples were collected to evaluate the nature, extent, and fate of residual hydrocarbons in the vadose zone. Pore gas from the till and dolomite in the source area was enriched in petroleum hydrocarbons and carbon dioxide, and was depleted in oxygen, relative to pore gas from the background area. During two years of ground water monitoring at the site, methyl tertiary butyl ether was periodically detected in the ground water beneath the source area as pulses of recharge passed through the unsaturated zone, but no other gasoline constituents were detected. Apparently, the most degradable fraction of the gasoline (aromatic hydrocarbons) is being attenuated in the vadose zone before the water table is reached.  相似文献   

9.
10.
11.
12.
13.
14.
本文在对渤海强震区地质构造环境、断裂带分布特征进行详细分析的基础上,采用机械加工聚碳酸酯材料制成渤海强震区域的地质模型,分别运用集中、二点和均布加载方式,用光弹实验方法模拟特定构造框架下应力、应变场的变化特征。通过对光弹实验数据的分析与处理,在对比不同加载方式下应力积累区域和地震危险点的基础上,判定渤海强震构造区中的地震危险区域。  相似文献   

15.
祁连山构造带地震迁移活动研究表明,存在不同震级层次的地震迁移现象:①大震顺构造带迁移由东而西震级衰减;②中强地震沿构造带东、中、西段交替发生;③横构造带地震跳迁会影响顺构造带地震的有序迁移;④祁连山中东段—东段存在发生破坏性地震的背景。  相似文献   

16.
Various types of models are being used to evaluate pesticide transport and transformation in the unsaturated zone. Model predictions can be used, for example, to develop alternative agricultural management strategies for pesticide use. However, intensive data requirements for transient models sometimes deter their use. Site-specific measurements are preferred, but existing data bases can be used as a source of required model parameters, especially weather and soil characteristics. These existing data bases make possible the use of models to predict leaching potential in a wide variety of environments.  相似文献   

17.
18.
Percolation and Particle Transport in the Unsaturated Zone of a Karst Aquifer   总被引:14,自引:0,他引:14  
Recharge and contamination of karst aquifers often occur via the unsaturated zone, but the functioning of this zone has not yet been fully understood. Therefore, irrigation and tracer experiments, along with monitoring of rainfall events, were used to examine water percolation and the transport of solutes, particles, and fecal bacteria between the land surface and a water outlet into a shallow cave. Monitored parameters included discharge, electrical conductivity, temperature, organic carbon, turbidity, particle-size distribution (PSD), fecal indicator bacteria, chloride, bromide, and uranine. Percolation following rainfall or irrigation can be subdivided into a lag phase (no response at the outlet), a piston-flow phase (release of epikarst storage water by pressure transfer), and a mixed-flow phase (increasing contribution of freshly infiltrated water), starting between 20 min and a few hours after the start of recharge event. Concerning particle and bacteria transport, results demonstrate that (1) a first turbidity signal occurs during increasing discharge due to remobilization of particles from fractures (pulse-through turbidity); (2) a second turbidity signal is caused by direct particle transfer from the soil (flow-through turbidity), often accompanied by high levels of fecal indicator bacteria, up to 17,000 Escherichia coli /100 mL; and (3) PSD allows differentiation between the two types of turbidity. A relative increase of fine particles (0.9 to 1.5 μm) coincides with microbial contamination. These findings help quantify water storage and percolation in the epikarst and better understand contaminant transport and attenuation. The use of PSD as "early-warning parameter" for microbial contamination in karst water is confirmed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号