首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
热带太平洋是影响全球气候系统的重要区域,热带太平洋海表温度(SST)的长期变化趋势模拟是国际研究领域关注的热点.基于12个参加第六期国际耦合模式比较计划(CMIP6)的模式结果,本研究对1950年至1999年间多模式模拟得到的热带太平洋SST增暖现象进行了初步评估.结果表明,不同模式对热带太平洋SST增暖的模拟能力差别...  相似文献   

2.
The problem of understanding linear predictability of elements of the ocean circulation is explored in the Atlantic Ocean for two disparate elements: (1) sea surface temperature (SST) under the storm track in a small region east of the Grand Banks and, (2) the meridional overturning circulation north of 30.5°S. To be worthwhile, any nonlinear method would need to exhibit greater skill, and so a rough baseline from which to judge more complex methods is the goal. A 16-year ocean state estimate is used, under the assumption that internal oceanic variability is dominating externally imposed changes. No evidence exists of significant nonlinearity in the bulk of the system over this time span. Linear predictability is the story of time and space correlations, and some predictive skill exists for a few months in SST, with some minor capability extending to a few years. Sixteen years is, however, far too short for an evaluation for interannual, much less decadal, variability, although orders of magnitude are likely stably estimated. The meridional structure of the meridional overturning circulation (MOC), defined as the time-varying vertical integral to the maximum meridional volume transport at each latitude, shows nearly complete decorrelation in the variability across about 35°N—the Gulf Stream system. If a time-scale exists displaying coherence of the MOC between subpolar and subtropical gyres, it lies beyond the existing observation duration, and that has consequences for observing system strategies and the more general problem of detectability of change.  相似文献   

3.
Various statistical methods (empirical orthogonal function (EOF), rotated EOF, singular value decomposition (SVD), principal oscillation pattern (POP), complex EOF (CEOF) and joint CEOF) were applied to low-pass filtered (>7 years) sea surface temperature (SST), subsurface temperature and 500 hPa geopotential height in order to reveal standing and propagating features of decadal variations in the North Pacific. Four decadal ocean-atmosphere covariant modes were found in this study. The first mode is the well-known ENSO-like mode associated with the “Pacific-North American” atmospheric pattern, showing SST variations reversed between the tropics and the extratropics. In the western tropical Pacific, subsurface temperature variations were found to be out of phase with the SST variations. The other three modes are related to the oceanic general circulation composed of the subtropical gyre, the Alaskan gyre and the subpolar gyre, respectively. The 1988/89 event in the northern North Pacific was found to be closely associated with the subtropical gyre mode, and the atmospheric pattern associated with this mode is the Arctic Oscillation. An upper ocean heat budget analysis suggests that the surface net heat flux and mean gyre advection are important to the Alaskan gyre mode. For the subpolar gyre mode, the mean gyre advection, local Ekman pumping and surface net heat flux play important roles. Possible air-sea interactions in the North Pacific are also discussed. The oceanic signals for these decadal modes occupy a thick layer in the North Pacific, so that accumulated heat content may in turn support long-term climate variations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
北太平洋经向翻转环流是北太平洋所有经向翻转环流圈的总称,目前它拥有五个环流圈,即副热带环流圈(the subtropical cell,STC)、热带环流圈(the tropical cell,TC)、副极地环流圈(the subpolar cell,SPC)、深层热带环流圈(the deep tropical cell,DTC)和温跃层环流圈(the thermohaline cell,THC)。这些环流圈是北太平洋经向物质和能量交换的重要通道,它们的变化对海洋上层热盐结构和气候变化皆有重要影响。迄今,人们已对STC、TC和DTC的结构形态、变化特征与机理开展了广泛而深入的研究,并对STC的极向热输送特征也做了一些初步分析。但应指出的是,关于SPC和THC的研究仍较少,迄今尚不清楚这两个环流圈的三维结构和变异机理;而且,对北太平洋经向翻转环流的热盐输送研究尚处于起步阶段,目前对各环流圈的热盐输送特征、变化规律和变异机理仍知之甚少,这些科学问题亟待深入研究。  相似文献   

5.
《Ocean Modelling》2008,20(2):157-169
The dynamical link between mean state biases and dominant timescales of interannual variability is examined using the output from two state-of-the-art coupled model simulations, results from an ocean-only simulation forced with observed surface fields, and various observational data sets. The focus of this study is the relative role of the mean upper ocean density structure vs. anomalous wind forcing in controlling the spectral characteristics of tropical Pacific interannual variability. It is shown that an extensive South Pacific Convergence Zone (SPCZ) creates a potential vorticity (PV) barrier in the Southern Hemisphere similar to the one associated with the Intertropical Convergence Zone (ITCZ) in the Northern Hemisphere in both climate models. The PV barrier in the Southern Hemisphere strongly constrains the mean equatorward flow in the ocean model pycnocline, creating a “choke point” for the mean flow around 10°S. It is then examined whether the PV barrier can also limit the anomalous flow associated with mass recharge/discharge to/from the equatorial thermocline at interannual timescales. If the anomalous flow were impeded by the mean PV structure the meridional extent of the area involved in the mass recharge/discharge process would be narrower, leading to a shorter adjustment (and ENSO) timescale. Comparison of the two climate models, both of which have similarly erroneous PV structures in the southern tropical Pacific, but different interannual timescales, shows that the meridional extent of the anomalous meridional transport is primarily controlled by the latitudinal location of the wind stress curl anomalies, while the mean state bias in the Southern Hemisphere does not seem to have any significant influence.  相似文献   

6.
Recent global warming caused by humans and the prediction of a reduced Atlantic Ocean meridional overturning circulation in the future has increased interest in the role of the overturning circulation in climate change. A schematic diagram of the overturning circulation called the “Great Ocean Conveyor Belt,” published by Wallace Broecker in 1987, has become a popular image that emphasizes the inter-connected ocean circulation and the northward flux of heat in the Atlantic. This seems a good time to review the development of the conveyor belt concept and summarize the history of overturning circulation schematics.In the 19th century it was thought that symmetric overturning circulation cells were located on either side of the equator in the Atlantic. As new hydrographic measurements were obtained, circulation schematics in the early 20th century began to show the inter-hemispheric overturning circulation in the Atlantic. In the second half of the 20th century schematics showed the global ocean overturning circulation including connections between the Atlantic and the Pacific and Indian Oceans. Some recent schematics of the overturning circulation show its complexities, but as more information is included these schematics have also become complex and not as easy to understand as the simple Broecker 1987 version. However, these complex schematics, especially the quantitative ones, represent valuable syntheses of our developing knowledge of the overturning circulation.  相似文献   

7.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

8.
Sea surface temperature (SST) data derived from satellite and in situ measurements are used to study the thermal variability in the South China Sea (SCS). Time–frequency–energy distributions, periods of variability, and trends are computed by the Hilbert–Huang transform method. The SST trend from 1982 to 2005 is 0.276°C per decade in the SCS which is higher than 0.144°C per decade in the western Pacific warm pool (WPWP). The warm pool (SST ≥ 28°C) area in the SCS has increased by 0.20 × 106 km2 per decade. The SST and area of the warm pool in the SCS are strongly correlated, respectively, with the SST and area of the WPWP with a time lag of 1 month, suggestive of a strong connection between these two warm pools. Once the annual cycle is eliminated, decadal oscillations dominate the variability of SST and warm pool area in the SCS.  相似文献   

9.
10.
Limitations in sea surface salinity (SSS) observations and timescale separation methods have led to an incomplete picture of the mechanisms of SSS decadal variability in the tropical Pacific Ocean, where the El Niño Southern Oscillation (ENSO) dominates. Little is known regarding the roles of the North Pacific Gyre Oscillation (NPGO) and the Pacific Decadal Oscillation (PDO) in the large-scale SSS variability over the tropical basin. A self-organizing map (SOM) clustering analysis is performed on the intrinsic mode function (IMF) maps, which are decomposed from SSS and other hydrological fields by ensemble empirical mode decomposition (EEMD), to extract their asymmetric features on decadal timescales over the tropical Pacific. For SSS, an anomalous pattern appeared during 1997 to 2004, a period referred to as the anomalous late 1990s, when strong freshening prevailed in large areas over the southwestern basin and moderate salinization occurred in the western equatorial Pacific. During this period, the precipitation and surface currents were simultaneously subjected to anomalous fluctuations: the precipitation dipole and zonal current divergence along the equator coincided with the SSS increase in the far western equatorial Pacific, while the weak zonal current convergence in the southwestern basin and large-scale southward meridional currents tended to induce SSS decreases there. The dominant decadal modes of SSS and sea surface temperature (SST) in the tropical Pacific both resemble the NPGO but occur predominantly during the negative and positive NPGO phases, respectively. The similarities between the NPGO and Central Pacific ENSO (CP-ENSO) in their power spectra and associated spatial patterns in the tropics imply their dynamical links; the correspondence between the NPGO-like patterns during negative (positive) phases and the CP La Niña (CP El Niño) patterns for SSS is also discussed.  相似文献   

11.
The circulation of the eastern tropical Pacific: A review   总被引:5,自引:9,他引:5  
During the 1950s and 1960s, an extensive field study and interpretive effort was made by researchers, primarily at the Scripps Institution of Oceanography, to sample and understand the physical oceanography of the eastern tropical Pacific. That work was inspired by the valuable fisheries of the region, the recent discovery of the equatorial undercurrent, and the growing realization of the importance of the El Niño phenomenon. Here we review what was learned in that effort, and integrate those findings with work published since then as well as additional diagnoses based on modern data sets.Unlike the central Pacific, where the winds are nearly zonal and the ocean properties and circulation are nearly independent of longitude, the eastern tropical Pacific is distinguished by wind forcing that is strongly influenced by the topography of the American continent. Its circulation is characterized by short zonal scales, permanent eddies and significant off-equatorial upwelling. Notably, the Costa Rica Dome and a thermocline bowl to its northwest are due to winds blowing through gaps in the Central American cordillera, which imprint their signatures on the ocean through linear Sverdrup dynamics. Strong annual modulation of the gap winds and the meridional oscillation of the Intertropical Convergence Zone generates a Rossby wave, superimposed on the direct forcing, that results in a southwestward-propagating annual thermocline signal accounting for major features of observed thermocline depth variations, including that of the Costa Rica Dome, the Tehuantepec bowl, and the ridge–trough system of the North Equatorial Countercurrent (NECC). Interannual variability of sea surface temperature (SST) and altimetric sea surface height signals suggests that the strengthening of the NECC observed in the central Pacific during El Niño events continues all the way to the coast, warming SST (by zonal advection) in a wider meridional band than the equatorially trapped thermocline anomalies, and pumping equatorial water poleward along the coast.The South Equatorial Current originates as a combination of equatorial upwelling, mixing and advection from the NECC, and Peru coastal upwelling, but its sources and their variability remain unresolved. Similarly, while much of the Equatorial Undercurrent flows southeast into the Peru Undercurrent and supplies the coastal upwelling, a quantitative assessment is lacking. We are still unable to put together the eastern interconnections among the long zonal currents of the central Pacific.  相似文献   

12.
A reduced estimate of Agulhas Current transport provides the motivation to examine the sensitivity of Indian Ocean circulation and meridional heat transport to the strength of the western boundary current. The new transport estimate is 70 Sv, much smaller than the previous value of 85 Sv. Consideration of three case studies for a large, medium and small Agulhas Current transport demonstrate that the divergence of heat transport over the Indian Ocean north of 32°S has a sensitivity of 0.08 PW per 10 Sv of Agulhas transport, and freshwater convergence has a sensitivity of 0.03×109 kg s−1 per 10 Sv of transport. Moreover, a smaller Agulhas Current leads to a better silica balance and a smaller meridional overturning circulation for the Indian Ocean. The mean Agulhas Current transport estimated from time-series current meter measurements is used to constrain the geostrophic transport in the western boundary region in order to re-evaluate the circulation, heat and freshwater transports across 32°S. The Indonesian Throughflow is taken to be 12 Sv at an average temperature of 18°C. The constrained circulation exhibits a vertical–meridional circulation with a net northward flow below 2000 dbar of 10.1 Sv. The heat transport divergence is estimated to be 0.66 PW, the freshwater convergence to be 0.54×109 kg s−1, and the silica convergence to be 335 kmol s−1. Meridional transports are separated into barotropic, baroclinic and horizontal components, with each component conserving mass. The barotropic component is strongly dependent on the estimated size of the Indonesian Throughflow. Surprisingly, the baroclinic component depends principally on the large-scale density distribution and is nearly invariant to the size of the overturning circulation. The horizontal heat and freshwater flux components are strongly influenced by the size of the Agulhas Current because it is warmer and saltier than the mid-ocean. The horizontal fluxes of heat and salt penetrate down to 1500 m depth, suggesting that warm and salty Red Sea Water may be involved in converting the intermediate and upper deep waters which enter the Indian Ocean from the Southern Ocean into warmer and saltier waters before they exit in the Agulhas Current.  相似文献   

13.
1 IntroductionAs is well known, the increasing greenhousegas and SO2extricated into the atmosphere due to hu-man activities have alreadyresulted in the global sur-face air temperature (SAT) and sea surface temper-ature (SST) rising. The globally mean surf…  相似文献   

14.
利用Hadley中心海冰和海表面温度资料集Had ISST和美国国家海洋大气管理局的扩展重建海温(ERSST)海表面温度(sea surface temperature,SST)观测数据,结合政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)中CMIP3(Coupled Model Intercomparison Project 3)的24个耦合模式的模拟结果,通过经验正交函数(EOF)分解等方法,对20世纪热带海洋在的SST年际变化进行了分析。结果表明,20世纪热带海洋年际变化的主要规律是ENSO信号,且有持续增强的趋势;热带海盆间存在显著的SST梯度,其长期变化与热带东太平洋显著相关。本文结论有利于理解在全球变暖背景下,海盆间的相互作用对赤道海域气候改变的影响。  相似文献   

15.
In the past nearly two decades, the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations, providing opportunities to extend our knowledge on the variability and effects of ocean salinity. In this study, we utilize the Argo data during 2004–2017, together with the satellite observations and a newly released version of ECCO ocean reanalysis, to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO) and its impacts on the regional sea level changes. Both the observations and ECCO reanalysis show that during the Argo era, sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017. Such a decadal phase reversal in sea level could be explained, to a large extent, by the steric sea level variability in the upper 300 m. Argo data further show that, in the SEIO, both the temperature and salinity changes have significant positive contributions to the decadal sea level variations. This is different from much of the Indo-Pacific region, where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale. The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection. More detailed decomposition reveals that in the SEIO, there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters. The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.  相似文献   

16.
Previous studies have found inconsistent results regarding how wintertime conditions in the Bering Sea relate to variations in the North Pacific climate system. This problem is addressed through analysis of data from the NCEP/NCAR Reanalysis for the period 1950–2003. Composite patterns of sea-level pressure, 500 hPa geopotential heights, storm tracks and surface air temperature are presented for four situations: periods of strong Aleutian Low, weak Aleutian Low, warm Bering Sea air temperatures, and cold Bering Sea air temperatures. Winter temperatures in the Bering Sea are only marginally related to the strength of the Aleutian Low, and are much more sensitive to the position of the Aleutian Low and to variations in storm tracks. In particular, relatively warm temperatures are associated with either an enhanced storm track off the coast of Siberia, and hence anomalous southerly low-level flow, or an enhanced storm track entering the eastern Bering Sea from the southeast. These latter storms do not systematically affect the mean meridional winds, but rather serve to transport mild air of maritime origin over the Bering Sea. The leading indices for the North Pacific, such as the NP and PNA, are more representative of the patterns of tropospheric circulation and storm track anomalies associated with the strength of the Aleutian Low than patterns associated with warm and cold wintertime conditions in the Bering Sea.  相似文献   

17.
李芙蓉  焦梦梁 《海洋通报》2012,31(4):384-390
利用奇异谱分析和小波分析的方法,分析了南海海表面温度异常(SSTA)在年代际尺度上的变化特征及其与太平洋年代际涛动(PDO)之间的关系.发现南海 SSTA 年代际振荡与年循环之间存在一定程度上的锁相:在冬、春季较强,而夏、秋季则较弱.此外,在过去的140多年,南海 SSTA 年代际振荡显著衰弱.通过与 PDO 指数进行相关分析发现,在年代际尺度上 PDO 与南海 SSTA 具有一定的相关性.一方面这种相关性只在20世纪前50年比较显著,这在一定程度上解释了为何南海 SSTA 的年代际振荡表现出衰减的趋势;另一方面,当 PDO 位相超前南海 SSTA 位相3到6个月时,两者表现出较强的相关性.进一步分析表明,PDO 可能通过调控赤道东太平洋 SST,从而影响南海 SSTA 的年代际变化.  相似文献   

18.
《Ocean Modelling》2007,16(3-4):236-249
Observational studies of the Pacific basin since the 1950s have demonstrated that a decrease (increase) in tropical Pacific sea surface temperatures (SSTs) is significantly correlated with a spin-up (slow-down) of the Pacific Subtropical Cells (STCs). STCs are shallow wind-driven overturning circulations that provide a pathway by which extratropical atmospheric variability can impact the equatorial Pacific thermocline and, through upwelling in the eastern equatorial Pacific, tropical Pacific SSTs. Recent studies have shown that this observed relationship between SSTs and STCs is absent in coupled climate model simulations of the late 19th–20th centuries. In this paper we investigate what causes this relationship to breakdown and to what extent this limits the models’ ability to simulate observed climate change in the equatorial Pacific since the late 19th century. To provide insight into these questions we first show that the NCAR Community Climate System Model’s simulation of observed climate change since the 1970s has a robust signal in the equatorial Pacific that bears a close resemblance to observations. Strikingly, absent is a robust signal in the equatorial thermocline. Our results suggest that the coupled model may be reproducing the observed local ocean response to changes in forcing but inadequately reproducing the remote STC-forcing of the tropical Pacific due to the underestimate of extratropical winds that force these ocean circulations. These conclusions are found to be valid in five different coupled climate model simulations of the late 19th–20th centuries (CCSM3, GISS EH, GFDL CM2.1, CSIRO-Mk3, and HadCM3).  相似文献   

19.
利用50 a的SODA资料对1月(冬季)和7月(夏季)印度洋越赤道经向翻转环流的年际变化进行研究。通过对2类典型年份的合成分析指出:1月份正异常年对应的经向翻转环流偏强,向北的经向热输送增加;7月份正异常年对应的经向翻转环流则偏弱,向南的经向热输送减少;1月份和7月份的负异常年皆与其正异常年相反;越赤道经向翻转环流有明显的年际变化,平均周期在4 a左右;经向翻转环流的年际变化和海面风场的变化密切相关。提出了反映1月和7月此环流年际变化的几个指数。  相似文献   

20.
Decadal variations of the transport and bifurcation latitude of the North Equatorial Current (NEC) in the northwestern tropical Pacific Ocean over 1959–2011 are investigated using outputs of the Ocean Analysis/Reanalysis System 3 prepared by the European Centre for Medium-Range Weather Forecasts. The results indicate that the NEC transports at different longitudes have different decadal fluctuations, which are strongest around 139°E. The NEC bifurcation latitude (NBL) has its largest decadal variations around 150 m. Extremes of the decadal NEC transport and NBL before 1975 correspond to different circulation anomalies from those after 1975. The regression map against decadal NBL exhibits negative sea surface height (SSH) anomalies and a cyclonic gyre anomaly over the northwestern tropical Pacific Ocean, while that against the decadal NEC transport exhibits a dipole structure, with positive/negative SSH anomalies to the north/south of about 13°N. Furthermore, decadal variations of the NEC transport and NBL over the whole period have different correlations with Pacific Decadal Oscillation (PDO) and Tropical Pacific Decadal Variability (TPDV). Generally, the decadal NEC transport shows higher correlations with PDO than with TPDV, while the NBL has higher correlations with TPDV than with PDO. The high correlation of decadal NEC transport with PDO mainly comes from that of its northern branch with PDO, while its southern branch shows higher correlation with TPDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号