首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil. Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism, it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas. Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs. They are mainly of dry gas, which are composed of methane and only tiny C 2 + heavy hydrocarbon and relatively higher contents of nitrogen gas. Generally, methane isotopes are light, whose values are between biogenic gas and thermal cracking gas. Ethane isotopes are heavy, which mixed possibly with thermogenic gas. Carbon dioxide bear the characteristics of very heavy carbon isotope, so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil. The heavy oil degraded gas formation, a very complex geological, geochemical and microbiological geochemical process, is the result of a series of reactions of organic matter-microbes and water-hydrocarbon, which is controlled by many factors.  相似文献   

2.

Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil. Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism, it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas. Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs. They are mainly of dry gas, which are composed of methane and only tiny C +2 heavy hydrocarbon and relatively higher contents of nitrogen gas. Generally, methane isotopes are light, whose values are between biogenic gas and thermal cracking gas. Ethane isotopes are heavy, which mixed possibly with thermogenic gas. Carbon dioxide bear the characteristics of very heavy carbon isotope, so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil. The heavy oil degraded gas formation, a very complex geological, geochemical and microbiological geochemical process, is the result of a series of reactions of organic matter-microbes and water-hydrocarbon, which is controlled by many factors.

  相似文献   

3.
Since the Meso-Cenozoic, controlled by paleoclimate, a series of fresh to brackish water basins and salt to semi-salt water basins were developed in wet climatic zones and in dry climate zones in China, respectively[1]. The geological and geochemical char…  相似文献   

4.
China sedimentary basins present abundant natural gas resource thanks to its unique geological settings.Marine highly-matured hydrocarbon source rocks,widespread coal-measure strata and low temperature Quaternary saline strata,etc.,indicate the wide foreground of China natural gas resources. Up to now,most of the petroliferous basins have been discovered to have wholesale natural gas accumulation from Precambrian,Paleozoic,Mesozoic to Cenozoic in the east,the central,the west and the coast of China.These large and medium-scale gas reservoirs are mainly composed of hydrocarbon gas with big dry coefficient,tiny non-hydrocarbon,wide carbon isotope distribution and varying origin types,the hydrocarbon gas includes coal-formed gas,oil-formed gas,biogenic gas and inorganic gas, etc.Coal-formed gas is the main type of China natural gas resources,in particular several explored large-scale gas fields(>100 billion cubic meter)of Kela 2,Sulige and Daniudi,etc.,they all belong to coal-formed gas fields or the gas fields consisting mostly of coal-formed gas.Oil-formed gas is also abundant in China marine basins,for example marine natural gas of Sichuan Basin generated from crude oil cracking gas.Primary and secondary biogenic gas fields were discovered respectively in the Qaidam Basin and Western Slope of Songliao Basin.In addition,inorganic gases are mainly distributed in the eastern China,in particular the Songliao Basin with abundant carbon dioxide accumulation,indicating that the eastern China present large exploration potential of inorganic gas.  相似文献   

5.
Crude oil hydrocarbon composition characteristics and oil viscosity prediction are important bases in petroleum exploration.A total of 54 oil/heavy-oil samples and 17 oil sands were analyzed and quantified using both comprehensive 2D gas chromatography(GC×GC)and comprehensive 2D gas chromatography/time-of-flight mass spectrometry(GC×GC/TOFMS).The results show that crude oil in the West slope is mainly heavy oil and its hydrocarbon composition is characterized overall by paraffinsmono-aromaticsnaphthenesnon-hydrocarbonsdi-aromaticstri-aromaticstetra-aromatics.Aromatics are most abundant and non-hydrocarbons are least abundant,whilst content differences among paraffins,naphthenes,aromatics,and non-hydrocarbons are less than 15%.There are two types of heavy oil,secondary type and mixing type.Biodegradation is the main formation mechanism of heavy oil.Biodegradation levels cover light biodegradation,moderate biodegradation,and severe biodegradation.With increasing biodegradation,paraffin content decreases while contents of aromatics and nonhydrocarbons increase.In contrast,naphthene content increases first and then decreases with increasing biodegradation.In severe biodegradation stage,naphthenes decrease more quickly than aromatics and non-hydrocarbons.This provides a new method for studying oil/heavy-oil biodegradation mechanism and biodegradation resistance of different hydrocarbons at different biodegradation stages.In the Longhupao-Daan terrace and Qijia-Gulong depression,most crude oil is conventional oil.Its composition is dominated by paraffins with the lowest content of aromatics.In some casual oil wells from the Longhupao-Daan terrace,crude oil from Saertu oil reservoirs is moderately biodegraded whereas crude oil from Putaohua oil reservoir is lightly biodegraded.Chemical parameters using saturate hydrocarbons and aromatics are usually not suitable for determining organic type and thermal maturity of biodegraded oil,especially of moderately or severely biodegraded oil,whilst Ts/(Ts+Tm)ratio can be used to determine thermal maturity of both conventional crude oil and heavy oil.  相似文献   

6.
The Liaohe Oilfield in the Liaohe Western Depression of the Bohai Gulf Basin is the third-largest oil producing province and the largest heavy oil producing oilfield in China. A total of 65 oil samples,35 rock samples and 36 reservoir sandstone samples were collected and analyzed utilizing conventional geochemical and biogeochemical approaches to unravel the mechanisms of the formation of the heavy oils. Investigation of the oils with the lowest maturity compared with the oils in the Gaosheng and Niuxintuo oilfields indicates no apparent relation between the maturity and physical properties of the heavy oils. It is suggested that the heavy oil with primary origin is not likely the main mechanism re-sponsible for the majority of the heavy oils in the Liaohe Western Slope. The absence and/or depletion of n-alkanes etc.,with relatively low molecular weight and the occurrence of 25-norhopane series in the heavy oils as well as the relatively high acidity of the oils all suggest that the majority of the heavy oils once experienced secondary alteration. The fingerprints of the total scanning fluorescence (TSF) of the inner adsorbed hydrocarbons on the reservoir grains and the included hydrocarbons in fluid inclusions are similar to that of the normal oils in the area but are different from the outer adsorbed and reser-voired free oils at present,further indicating that most of the heavy oils are secondary in origin. Analyses of bacteria (microbes) in 7 oil samples indicate that anaerobic and hyperthermophilic Ar-chaeoglobus sp. are the dominant microbes relevant to oil biodegradation,which coincides with the shallow commercial gas reservoirs containing anaerobic bacteria derived gas in the Gaosheng and Leijia teotonic belts. The biodegradation most likely occurs at the water/oil interface,where the forma-tion water is essential for microbe removal and nutrient transportation. We think that biodegradation,water washing and oxidization are interrelated and are the main mechanisms for the formation of the heavy oils. Biodegradation was the predominant process with water washing being a prerequisite,and oxidization acting as a metabolic manifestation. This study provides unique approaches for further investigation of the formation mechanisms of heavy oils in general,and may provide some important insight for the exploration of shallow biogas in the area.  相似文献   

7.
Lunnan region is a large-scale paleohigh with many coexisting oil and gas bearing series.At present, about 2 billions tons of proved,probable and possible oil and gas reverses have been proved there.Eight oil and gas bearing series have been found in the Ordovician,Carboniferous,Triassic and Jurassic of Lunnan region,they all bear the characteristics of large-scale multilayer oil-gas province.Ordovician is the main reservoir series where over 0.8 billion tons of oil geologic reserves were discovered,and a super large-scale marine carbonate oil and gas field has formed.Reservoir space of the carbonate reservoirs is mainly composed of dissolved hole,dissolved pore and fracture in Lunnan paleo-burial hill.Generally, dissolved holes are widely distributed among them.Reservoir developments are mainly controlled by karstification and tectonic disruption.Due to the similar geochemical characters,the Ordovician,Carboniferous,Triassic and Jurassic oil and gas reservoirs present the same oil source rock of Mid-Upper Ordovician,the latter except Ordovician are mostly of secondary oil and gas reservoirs migrated vertically by faults during the process of multiple phase tectonic movement,adjustment and reconstruction. Lunnan composite oil and gas accumulation region is situated in the vicinity of large-scale hydrocarbon generation depressions in three directions,ample oil and gas from hydrocarbon generation depressions supplied the adjacent oil and gas reservoirs once.Hereby,the succeed paleohigh is the long-term hydrocarbon accumulation region,which is favor for the formations of high quality reservoirs,fault systems and huge-scale composite oil and gas accumulation.  相似文献   

8.
Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argilla- ceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000--4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.  相似文献   

9.
莺歌海盆地中央坳陷带海底天然气渗漏系统初探   总被引:3,自引:2,他引:1       下载免费PDF全文
地球物理资料表明,莺歌海盆地区麻坑众多,浅层气发育,在高分辨率地震剖面上可以识别出到达海底的地震模糊带,在3.5 kHz的浅层剖面上可见穿透到海底的气体聚集带,在声呐图像可以识别出麻坑.莺歌海盆地不仅在其边缘隆起带沉积层较薄的地区存在海底天然气渗漏现象,而且在中央坳陷带沉积层巨厚的地区也存在海底天然气渗漏,海底天然气渗漏在莺歌海盆地是广泛分布的.莺歌海盆地广泛分布的海底天然气渗漏是全球海底天然气渗漏系统的重要组成部分,海底天然气渗漏系统排出的大量甲烷气体的一部分可能穿越水层到达海面.  相似文献   

10.
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo‐Wilcox Aquifer (250‐1200 m depth range) and Queen City‐Sparta Aquifer (150‐900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ13Cmethane (>?55‰) and δDmethane (>?180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ13Cmethane and δDmethane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs.  相似文献   

11.
The establishment of geochemical-tracing system of gas generation and accumulation is helpful to re-elucidating the gas migration and accumulation in time and space. To deduce the complex process of gas accumulation, a ternary geochemical-tracing system is set up, according to stable isotope inheritance of source rocks, kinetic fractionation of stable isotopes, time-accumulating effect of noble gas isotopes, mantle-derived volatile inheritance, and organic molecule inheritance of light hydrocarbons and thermally kinetic fractionation in their generation, in combination with the previous achievements of gas geochemistry and geochemical parameters of gas-source correlation. There are tight interactions for the geochemical parameters with much information about parent inheritance and special biomarkers, in which they are confirmed each other, reciprocally associated and preferentially used for the requirement so that we can use these geochemical parameters to effectively demonstrate the sources of natural gas, sedimentary environments and thermal evolution of source rocks, migration and accumulation of natural gas, and rearrangement of natural gas reservoirs. It is necessary for the ternary geochemical-tracing system to predict the formation of high efficient gas reservoir and their distribution in time and space.  相似文献   

12.
Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale‐gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near‐pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre‐industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane‐rich samples were associated with high‐salinity, NaCl‐type groundwater and elevated levels of ethane, 4He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ13C‐CH4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane‐rich samples record a history of fractionation during gas‐phase migration from source rocks to shallow aquifers. Conversely, methane‐poor samples have a paucity of ethane and 4He, near saturation levels of atmospheric noble gases, and more negative δ13C‐CH4; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas).  相似文献   

13.
Zou  Caineng  Yang  Zhi  Sun  Shasha  Zhao  Qun  Bai  Wenhua  Liu  Honglin  Pan  Songqi  Wu  Songtao  Yuan  Yilin 《中国科学:地球科学(英文版)》2020,63(7):934-953
The Sichuan Basin is rich in shale oil and gas resources, with favorable geological conditions that the other shale reservoirs in China cannot match. Thus, the basin is an ideal option for fully "exploring petroleum inside source kitchen" with respect to onshore shale oil and gas in China. This paper analyzes the characteristics of shale oil and gas resources in the United States and China, and points out that maturity plays an important role in controlling shale oil and gas composition. US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas, whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy. A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects. First, there are multiple sets of organic-rich shale reservoirs of three types in the basin, such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale, Permian Longtan Formation transitional shale, Triassic Xujiahe Formation lake-swamp shale, and Jurassic lacustrine shale. Marine shale gas enrichment is mainly controlled by four elements: Deep-water shelf facies, moderate thermal evolution, calcium-rich and silicon-rich rock association, and closed roof/floor. Second, the "sweet section" is generally characterized by high total organic carbon, high gas content, large porosity, high brittle minerals content, high formation pressure,and the presence of lamellation/bedding and natural microfractures. Moreover, the "sweet area" is generally characterized by very thick organic-rich shale, moderate thermal evolution, good preservation conditions, and shallow burial depth, which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation, Longtan Formation, and Daanzhai Member of the Ziliujing Formation. Third, the marine, transitional, and continental shale oil and gas resources in the Sichuan Basin account for 50%, 25%, and 30% of the respective types of shale oil and gas geological resources in China, with great potential to become the cradle of the shale oil and gas industrial revolution in China. Following the "Conventional Daqing-Oil"(i.e., the Daqing oilfield in the Songliao Basin) and the "Western Daqing-Oil Gas"(i.e., the Changqing oilfield in the Ordos Basin), the Southwest oil and gas field in the Sichuan Basin is expected to be built into a "Sichuan-Chongqing Daqing-Gas" in China.  相似文献   

14.
Well Yingnan 2,an important exploratory well in the east of Tarim Basin,yields high commercial oil and gas flow in Jurassic.Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas.Because this region presents many suits of hydrocarbon source rocks,there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present.By using the kinetics of hydrocarbon generation and carbon isotope,natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas,about 72%,it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir.The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2,so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

15.
It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity and various chemical features.The central part of southern margin of Junggar Basin, NW China is such an example where there are condensates, light oils, normal density oils, heavy crude oils and natural gases. The formation mechanism of condensates has been seriously debated for long time;however, no study has integrated it with genetic types of waxy and heavy oils. Taking the central part of southern margin of Junggar Basin as a case, this study employs geological and geochemical methods to determine the formation mechanism of condensates,waxy and heavy oils in a complicated petroliferous area, and reveals the causes and geochemical processes of the co-occurrence of different types of crude oils in this region. Based on detailed geochemical analyses of more than 40 normal crude oils, light oils,condensates and heavy oils, it is found that the condensates are dominated by low carbon number n-alkanes and enriched in light naphthenics and aromatic hydrocarbons. Heptane values of these condensates range from 19% to 21%, isoheptane values from1.9 to 2.1, and toluene/n-heptane ratios from 1.5 to 2.0. The distribution of n-alkanes in the condensates presents a mirror image with high density waxy crude oils and heavy oils. Combined with the oil and gas-source correlations of the crude oils, condensates and natural gas, it is found that the condensates are product of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils which were derived from mature Cretaceous lacustrine source rocks in the relatively early stage. The waxy oils are the intermediate products of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils, while the heavy oils are in-situ residuals. Therefore, evaporative fractionation and/or phase-controlled fractionation would account for the formation of the condensate, light oil, waxy oil and heavy oil in the central part of southern margin of Junggar Basin, resulting in a great change of the content in terms of light alkanes, naphthenics and aromatics in condensates, followed by great uncertainties of toluene/n-heptane ratios due to migration and re-accumulation. The results suggest that the origin of the condensate cannot be simply concluded by its ratios of toluene/n-heptane and n-heptane/methylcyclohexane on the Thompson's cross-plot, it should be comprehensively determined by the aspects of geological background, thermal history of source rocks and petroleum generation,physical and chemical features of various crude oils and natural gas, vertical and lateral distribution of various crude oils in the study area.  相似文献   

16.
The composition of fluid inclusions (FI) often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock. Influence on composition and carbon isotopic composition of gas during primary migration, reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin. The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane. Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in Fls. Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.  相似文献   

17.
The composition of fluid inclusions(FI)often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock.Influence on composition and carbon isotopic composition of gas during primary migration,reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin.The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane.Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in FIs.Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.  相似文献   

18.

The composition of fluid inclusions (FI) often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock. Influence on composition and carbon isotopic composition of gas during primary migration, reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin. The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane. Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in Fls. Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.

  相似文献   

19.
Clusters of elevated methane concentrations in aquifers overlying the Barnett Shale play have been the focus of recent national attention as they relate to impacts of hydraulic fracturing. The objective of this study was to assess the spatial extent of high dissolved methane previously observed on the western edge of the play (Parker County) and to evaluate its most likely source. A total of 509 well water samples from 12 counties (14,500 km2) were analyzed for methane, major ions, and carbon isotopes. Most samples were collected from the regional Trinity Aquifer and show only low levels of dissolved methane (85% of 457 unique locations <0.1 mg/L). Methane, when present is primarily thermogenic (δ13C 10th and 90th percentiles of ?57.54 and ?39.00‰ and C1/C2+C3 ratio 10th, 50th, and 90th percentiles of 5, 15, and 42). High methane concentrations (>20 mg/L) are limited to a few spatial clusters. The Parker County cluster area includes historical vertical oil and gas wells producing from relatively shallow formations and recent horizontal wells producing from the Barnett Shale (depth of ~1500 m). Lack of correlation with distance to Barnett Shale horizontal wells, with distance to conventional wells, and with well density suggests a natural origin of the dissolved methane. Known commercial very shallow gas accumulations (<200 m in places) and historical instances of water wells reaching gas pockets point to the underlying Strawn Group of Paleozoic age as the main natural source of the dissolved gas.  相似文献   

20.
Oils, condensates and natural gases in the Kekeya Field, southeast depression of the Tarim Basin were studied for their geochemical characteristics. According to the distribution analysis of the C2/C3 values with C1/C2 values, C2/C3 values with C1/C3 values, as well as C2/C3 values with dryness index, there are two different types of natural gases in the studied field, which are spatially regularly distributed. One is the oil cracking gas, located on shallow reservoirs over X 5 2 reservoir, namely Upper oil legs; the other is kerogen cracking gas, located on X 7 2 reservoirs, X8 reservoirs and E2 k reservoirs, namely Lower oil legs. In addition, the distribution patterns of molar concentration of oils and condensates with different carbon numbers of the n-alkanes in the Kekeya Field indicate that the crude oils have experienced several kinds of secondary alterations, which were closely related to the charging of gaseous hydrocarbons after petroleum accumulation. These results indicate that, based on the research of δ 13C values of individual hydrocarbons, heptane values and isoheptane values of light hydrocarbons and aromatic maturity parameters for oils, condensates and natural gases, oils and gases were charged at different geological time in the Kekeya Field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号