首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many unidentified lines in the spectrum of Przybylski’s star (HD 101065) match well the spectral lines of radioactive elements, including the lines of short-lived isotopes. The origin of such isotopes in the atmosphere of the star remains unknown. We discuss a scenario in which some heavy nuclei of radioactive elements are produced in Przybylski’s star atmosphere as a result of its permanent exposure to the gamma flux (photon-nuclear reactions) or of the direct interaction of the free neutrons which arise in the atmosphere with seed nuclei of lighter elements (r-process). In both cases the gamma quanta and the free neutrons originate due to the presence of the neutron star which forms a close binary system with Przybylski’s star. This neutron star is the source of the fast electrons and positrons which produce gamma quanta when they are decelerated in their interaction with the atomic nuclei of the atmospheric plasma, while free neutrons can originate in the reactions of the direct capture of fast electrons by atmospheric protons (nuclei of hydrogen atoms).  相似文献   

2.
3.
We discuss the influence of nuclear masses and mass distributions of fission products on the formation of heavy elements at the final stages of the r-process recycled through fission on long duration timescales. The fission recycling is of great importance in an environment with a high density of free neutrons (e.g., in neutron star merger scenarios), when the r-process duration is long enough for most of the seed nuclei to be transformed into actinoids. The fission products of transuranium elements are again drawn into the r-process to produce the abundance curve beyond the iron peak. In this case, to explain the abundances of the A ~ 130 peak elements, not only the nuclear masses, fission barriers, and reaction rates, but also the fission product mass distribution must be predicted. Our r-process calculations using new nuclear masses and fission barriers and reaction rates based on them have shown that the simple two-fission-fragment model used previously in r-process calculations cannot describe adequately the position of the second peak in the observed abundance curve. We show that agreement between calculations and observations can be achieved only when we properly consider the mass distribution of fission products by taking into account the emission of instantaneous fission neutrons.  相似文献   

4.
Chollet  E. E.  Mewaldt  R. A. 《Solar physics》2012,281(1):449-459

We report on new simulations of the transport of energetic protons originating from the decay of energetic neutrons produced in solar flares. Because the neutrons are fast-moving but insensitive to the solar wind magnetic field, the decay protons are produced over a wide region of space, and they should be detectable by current instruments over a broad range of longitudes for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to the Sun are expected to see orders-of-magnitude higher intensities than those at the Earth-Sun distance. The current solar cycle should present an excellent opportunity to observe neutron-decay protons with multiple spacecraft over different heliographic longitudes and distances from the Sun.

  相似文献   

5.
Kocharov  L. G.  Torsti  J.  Vainio  R.  Kovaltsov  G. A.  Usoskin  I. G. 《Solar physics》1996,169(1):181-207
A joint analysis of neutron monitor and GOES data is performed to study the production of high-energy neutrons at the Sun. The main objects of the research are the spectrum of >50 MeV neutrons and a possible spectrum of primary (interacting) protons which produced those neutrons during the major 1990 May 24 solar flare. Different possible scenarios of the neutron production are presented. The high magnitude of the 1990 May 24 neutron event provided an opportunity to detect neutron decay protons of higher energies than ever before. We compare predictions of the proposed models of neutron production with the observations of protons on board GOES 6 and 7. It is shown that the precursor in high-energy GOES channels observed during 20:55–21:09 UT can be naturally explained as originating from decay of neutrons in the interplanetary medium. The ratio of counting rates observed in different GOES channels can ensure the selection of the model parameters.The set of experimental data can be explained in the framework of a scenario which assumes the existence of two components of interacting protons in the flare. A hard spectrum component (the first component) generates neutrons during a short time while the interaction of the second (soft spectrum) component lasts longer. Alternative scenarios are found to be of lesser likelihood. The intensity-time profile of neutron - decay protons as predicted in the framework of the two-component exponential model of neutron production (Kocharov et al., 1994a) is in an agreement with the proton profiles observed on board GOES. We compare the deduced characteristics of interacting high-energy protons with the characteristics of protons escaping into the interplanetary medium. It is shown that, in the 100–1000 MeV range, the spectrum of the second component of interacting protons was close to the spectrum of the prompt component of interplanetary protons. However, it is most likely that, at 300 MeV, the interacting proton spectrum was slightly softer than the spectrum of interplanetary protons. An analysis of gamma-ray emission is required to deduce the spectrum of interacting protons below 100 MeV and above 1 GeV.  相似文献   

6.
The constraints on the properties of neutron star matter from the mass of neutron star PSR J1614-2230 are examined in the framework of the relativistic mean field theory. We find that there are little differences between the σ potentials of large mass neutron star and those of canonnical mass neutron star. For potentials of ω, ρ, neutrons and electrons, the values corresponding to the large mass neutron star are larger than those to the canonnical mass neutron star as the baryon number density is more than a certain value. We also find that for the relative particle number density of electrons, muons, neutrons and protons and the pressure of the neutron star, the values corresponding to the large mass neutron star are far larger than those to the canonnical mass neutron star. For the relative particle number density of hyperons Λ, Σ?, Σ0, Σ+ and Ξ?, the values corresponding to the large mass neutron star are far smaller than those to the canonnical mass neutron star. These mean that the larger mass of neutron star is more advantageous to the production of protons but is not advantageous to the production of hyperons.  相似文献   

7.
We consider the galactic population of gamma-ray pulsars as possible sources of cosmic rays at and just above the “knee” in the observed cosmic ray spectrum at 1015–1016 eV. We suggest that iron nuclei may be accelerated in the outer gaps of pulsars, and then suffer partial photo-disintegration in the non-thermal radiation fields of the outer gaps. As a result, protons, neutrons, and surviving heavier nuclei are injected into the expanding supernova remnant. We compute the spectra of nuclei escaping from supernova remnants into the interstellar medium, taking into account the observed population of radio pulsars.

Our calculations, which include a realistic model for acceleration and propagation of nuclei in pulsar magnetospheres and supernova remnants, predict that heavy nuclei accelerated directly by gamma-ray pulsars could contribute about 20% of the observed cosmic rays in the knee region. Such a contribution of heavy nuclei to the cosmic ray spectrum at the knee can significantly increase the average value of lnA with increasing energy as is suggested by recent observations.  相似文献   


8.
We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets by the Hinode and STEREO spacecraft. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E=−(1/c)V ×B. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T?T, which can excite ion cyclotron waves. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. We also discuss the mechanism of heavy ion reflection, which is based on ion gyration in the magnetic overshoot of the shock.  相似文献   

9.
We employ spectra of resolution 20–35000 of seven SC stars, four S stars, two Ba stars and two K–M stars to derive abundances of a variety of elements from Sr to Eu relative to iron. Special attention is paid to Rb and Tc, and to the ratio of the heavy s-process species to the light s-process elements. Abundances are derived in LTE, both by using model atmospheres in which the carbon and oxygen abundances are nearly equal and by using curves of growth. Spectrum synthesis is used for critical lines such as the 5924-Å line of Tc and the 7800-Å line of Rb. For most of the heavy-element stars the enhancement of the s-process elements is about a factor of 10. The ratio of the heavy to light s-process species is not far from solar, except for RR Her for which the same ratio is +0.45 dex. For Tc the blending by other lines is severe. While we have probably detected the 5924-Å line, we can only present abundances in the less-than-or-equal-to category. For Rb, whose abundance is sensitive to the 85Rb/87Rb ratio and hence to the neutron density during s-process production, we find a considerable range of abundances, indicating a neutron density from 106 to ≳108 cm−3 for the SC stars. For the four S stars the range is from 107 to ≳108 cm−3. Recent calculations by Gallino et al. show that neutron densities near 107 cm−3 favour the 13C source for neutrons, while densities greater than 108 cm−3 may be associated with neutrons from the 22Ne source.  相似文献   

10.
Ifedili  S. O. 《Solar physics》1997,171(2):447-451
Solar flare neutron measurements are used to normalize the results of the calculation of Claflin and White (1970) for injection of protons into the Earth's radiation belt by solar neutron decay. Our results indicate that solar neutron decay injection of protons from solar flare neutrons is the major source of protons (E > 30 MeV) at L 2 in the radiation belt.  相似文献   

11.
Strong evidence that some neutron stars precess (nutate) with long periods (∼1 yr) challenges our current understanding of the neutron star interior. I describe how neutron star precession can be used to constrain the state of the interior in a new way. I argue that the standard picture of the outer core, in which superfluid neutrons coexist with type II, superconducting protons, requires revision. One possible resolution is that the protons are not type II, but type I. Another possibility is that the neutrons are normal in the outer core. I conclude with a brief discussion of the implications for detectable gravitational wave emission from millisecond pulsars. Much of the work described here was supported by the National Science Foundation under Grant AST-00098728.  相似文献   

12.
We investigate the combined effect of neutron and proton superfluidities on the cooling of neutron stars whose cores consist of nucleons and electrons. We consider the singlet state paring of protons and the triplet pairing of neutrons in the cores of neutron stars. The critical superfluid temperatures T c are assumed to depend on the matter density. We study two types of neutron pairing with different components of the total angular momentum of a Cooper pair along the quantization axis (|m J |=0 or 2). Our calculations are compared with the observations of thermal emission from isolated neutron stars. We show that the observations can be interpreted by using two classes of superfluidity models: (1) strong proton superfluidity with a maximum critical temperature in the stellar core T c max ?4×109 K and weak neutron superfluidity of any type (T c max ?2×108 K); (2) strong neutron superfluidity (pairing with m J =0) and weak proton superfluidity. The two types of models reflect an approximate symmetry with respect to an interchange of the critical neutron and proton pairing temperatures.  相似文献   

13.
《Icarus》1986,66(1):165-180
We investigate the interaction of heavy cometary ions with the solar wind and the formation of a bow shock in front of a comet by means of a hybrid (particle ion, fluid electron) simulation code that solves self-consistently for the electromagnetic fields and the motion of the charged particles. This kinetic treatment of the solar wind protons and the heavy cometary ions allows us to examine two important issues. One is the effect of the velocity distribution function of the heavy ions on the shock formation and structure, and the other is the degree of coupling between the two ion species. The result of this study indicate that at high Mach numbers the shock structure is highly dependent upon the velocity distribution of the heavy ions. For example, when the newly created ions comprise a ring distribution in the solar wind frame, most of them turn around downstream of the shock surface and reenter the upstream region to form a large foot that extends about a heavy ions gyroradius upstream of the shock. On the other hand, heavy ions which have been picked up by the solar wind and possesses a Maxwellian distribution can mostly penetrate the shock without returning upstream and affecting the shock structure as much. In either case, however, at high Mach numbers the shock strength is the same. At low Mach numbers, where the shock is weak, the velocity distribution of heavy ions has a smaller effect on the formation of shock and its structure. In this regime, the degree of coupling between the cometary ions and the solar wind protons and the corresponding critical Mach number (at which a shock should begin to form) are determined from a set of Rankine-Hugoniot relations. The results of the simulations suggest that some coupling does occur (evidently, through the electromagnetic fields, since there are no particle collisions in the calculations), but less than that expected from magnetohydrodynamics. For low Mach numbers, it is also shown that shocks have a transitory nature, where they are continuously formed by the protons and subsequently destroyed by the heavy ions.  相似文献   

14.
We consider the influence of the capture of epithermal neutrons on the nucleosynthesis in asymptotic giant branch stars (the Petrov-Shlyakhter effect). We show that epithermal neutrons can be captured by nitrogen through the hitherto unanalyzed channel 14N(n, α)11B. Since the proton concentration in the partial mixing zone is low, this process results in an appreciable boron concentration. This boron can be brought to the stellar surface by peculiar processes. We analyze the boron concentration as a function of the assumed parameters for the partial mixing zone.  相似文献   

15.
We searched for solar neutrons using the data collected by six detectors from the International Network of Solar Neutron Telescopes and one Neutron Monitor between January 2010 and December 2014. We considered the peak time of the X-ray intensity of thirty five ≥ X1.0 class flares detected by GOES satellite as the most probable production time of solar neutrons. We prepared a light-curve of the solar neutron telescopes and the neutron monitor for each flare, spanning ± 3 h from the peak time of GOES. Based on these light curves, we performed a statistical analysis for each flare. Setting a significance level at greater than 3σ, we report that no statistically significant signals due to solar neutrons were found. Therefore, upper limits are determined by the background level and solar angle of these thirty five solar flares. Our calculation assumed a power-law neutron energy spectrum and an impulsive emission profile at the Sun. The estimated upper limits of the neutron emission are consistent within the order of magnitude of the successful detections of solar neutrons made in solar cycle 23.  相似文献   

16.
Several satellite experiments have measured the solar Lyman-α line, either in scattering from upper atmospheric atomic hydrogen (the Lyman-α airglow) or directly at line center (which determines the hydrogen column density along the line of sight). Recent analyses of data from the above experiments consistently reveal the presence of an atomic hydrogen depletion at high latitudes. In situ determinations of hydrogen at lower altitude show no evidence of such behaviour. This has led us to postulate two mechanisms which may be more effective in reducing the high-latitude density at the high altitudes of the exospheric measurements (500–2000 km). The first is the polar wind loss of protons, which depletes atomic hydrogen through a charge exchange reaction. The second is a high-latitude magnetospheric heating of protons, followed by charge exchange. Opposing the above loss mechanisms are the influences of ballistic lateral flow and mean meriodional winds. We have shown by means of a three-dimensional exospheric transport model that none of the above mechanisms can reconcile the disparate results in the two altitude regimes, nor can they provide the large outward hydrogen fluxes and the correct seasonal variations observed at high latitudes.  相似文献   

17.
We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.  相似文献   

18.
The influence of temperature changes in circumstellar silicate-like envelopes upon the polarization effects is investigated. It is shown that under the assumption that ΔT g>50° and conductivity of silicate grains is indirectly proportional toT g this mechanism can be responsible for the observed dependence of intensity vs polarization in some late-type stars, e.g. V CVn. The same effects can be produced by dirty ices and graphite grains. It is suggested that irradiation by electrons and/or protons can affect the circumstellar envelopes in a similar way, especially those of early-type stars, and irradiation by neutrons can exert an influence on the envelopes of supernovae.  相似文献   

19.
Abstract— Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay, in order to simulate the production of nuclides in meteorites induced by galactic cosmic‐ray protons in space. These experiments supply depth‐dependent production rate data for a wide range of radioactive and stable isotopes in up to 28 target elements. In this paper, we report results for 78Kr, 80–86Kr isotopes in Rb, Sr, Y and Zr and for 124Xe, 126Xe, 128–132Xe, 134Xe, 136Xe isotopes in Ba and La. Krypton and xenon concentrations have been measured at different depths in the spheres by using conventional mass spectrometry. Based on Monte‐Carlo techniques, theoretical production rates are calculated by folding depth‐dependent spectra of primary and secondary protons and secondary neutrons with the excitation functions of the relevant nuclear reactions. The comparison of the model calculation results with experimental data in the thick target experiments performed at LNS and previously at CERN have allowed adjustments of the poorly known excitation functions of neutron‐induced reactions. Thus, for the two experiments at SATURNE, excellent agreement is obtained between experimental and calculated production rates for most Kr and Xe isotopes in all investigated target elements. Only Xe production in Ba in the gabbro is underestimated by the calculations by ?25%. This work validates the approach of the thin‐target model calculations of cosmogenic nuclide production rates in the attempt of modeling the interaction of galactic cosmic‐ray protons with stony and iron meteorites in space as well as with lunar samples.  相似文献   

20.
Miroshnichenko  L.I.  Pérez EnrÍquez  R.  Mendoza  B. 《Solar physics》1999,186(1-2):381-400
It is widely accepted now that a significant fraction of the solar energetic particles (SEPs) observed at 1 AU after major solar flares are actually accelerated at a CME-driven shock. In addition, in the emerging new paradigm for SEP acceleration in different sources at or near the Sun, the existence of two types of flares – impulsive and gradual – is recognized. Within this concept, it is tempting also to separate SEPs into two groups – interacting and escaping – and to derive their 'source spectra' from observational data on various flare emissions (protons, gamma rays, neutrons, etc.). By different techniques, those spectra have been reconstructed for 80 solar proton events (SPE) in 1949–1991. In this paper, all available data on the source spectra of solar protons are summarized and revised. We discuss in detail existing uncertainties in the derived spectral indexes, consider other methodological problems involved in this study, and suggest several possible lines for the future investigations of solar flares and SCRs using the source spectrum data. It is noted that some peculiarities of the spectra, for instance, spectral steepening for high energies, may be characteristic of large events of the 23 February 1956 type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号