首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Questions such as what, where, when, and how often to sample play a central role in the development of monitoring strategies. Limited resources will not permit sampling for many contaminants at the same frequency at all well sites. Therefore, a resource allocation strategy is necessary to arrive at answers for the preceding types of questions. Such a strategy for a ground water quality monitoring program is formulated as an integer programming model (an optimization model). The model will be of use in the process of deciding what constituents to sample and where to sample them so as to maximize a given objective, subject to a set of budget, sampling, and regulatory constraints. The maximization objective in the model is defined as a weighted function of population exposure to a scaled measure of observed chemical concentrations. The sampling constraints are based on the observed variability of contaminants in the aquifer, needed precision in estimates, a chosen level of significance, the available budget for implementing the program, and selected regulatory constraints. The model is tested with field data obtained for 10 selected constituents from more than 650 wells in the Cambrian-Ordovician aquifer in Iowa. Results from two alternative formulations of the model are compared, analyzed, and discussed. Further avenues for research are briefly outlined.  相似文献   

2.
3.
The authors have recently used several innovative sampling techniques for ground water monitoring at hazardous waste sites. Two of these techniques were used for the first time on the Biscayne Aquifer Super-fund Project in Miami, Florida. This is the largest sampling program conducted so far under the U.S. Environmental Protection Agency (EPA) Superfund Program.
One sampling technique involved the use of the new ISCO Model 2600 submersible portable well sampling pump. A compressed air source forces water from the well into the pump casing and then delivers it to the surface (through a pulsating action). This pump was used in wells that could not be sampled with surface lift devices.
Another sampling technique involved the use of a Teflon manifold sampling device. The manifold is inserted into the top of the sampling bottle and a peristaltic pump creates a vacuum to draw the water sample from the well into the bottle. The major advantage of using this sampling technique for ground water monitoring at hazardous waste sites is the direct delivery of the water sample into the collection container. In this manner, the potential for contamination is reduced because, prior to delivery to the sample container, the sample contacts only the Teflon, which is well-known for its inert properties.
Quality assurance results from the Superfund project indicate that these sampling techniques are successful in reducing cross-contamination between monitoring wells. Analysis of field blanks using organic-free water in contact with these sampling devices did not show any concentration at or above the method detection limit for each priority pollutant.  相似文献   

4.
Several detergent-washing/air-drying decontamination protocols were tested to determine their ability to remove residual contamination from two types of ground water sampling devices. We tested a relatively simply constructed device, a bailer, and a much more complex, and theoretically more difficult to decontaminate, bladder pump. The devices were decontaminated after sampling ground water that was contaminated with organics that varied in their hydrophobic nature and propensity to be sorbed by the materials in the devices. These studies showed that a hot-detergent wash, hot-water rinse, and hot-air drying protocol was effective.  相似文献   

5.
The objective of most ground water quality monitoring programs is to obtain samples that are "representative" or that retain the physical and chemical properties of the ground water in an aquifer. Many factors can influence whether or not a particular sample is representative, but perhaps the most critical factor is the method or type of sampling device used to retrieve the sample.
The sampling equipment available today ranges from simple to highly sophisticated, and includes bailers, syringe devices, suction-lift pumps, gas-drive devices, bladder (Middelburg-type) pumps, gear-drive and helical rotor electric submersible pumps and gas-driven piston pumps. New devices are continually being developed for use in small-diameter wells in order to meet the needs of professionals engaged in implementing elaborate ground water monitoring programs.
In selecting a sampling device for a monitoring program, the professional must consider a number of details. Among the considerations are: the outside diameter of the device, the overall impact of the device on ground water sample integrity (including the materials from which the sampling device and associated equipment are made and the method by which the device delivers the sample), the capability of the device to purge the well of stagnant water, the rate and the ability to control the rate at which the sample is delivered, the depth limitations of the device, the ease of operating, cleaning and maintaining the device, the portability of the device and required accessory equipment, the reliability and durability of the device, and the initial and operational cost of the device and accessory equipment. Based on these considerations, each of the devices available for sampling ground water from small-diameter wells has its own unique set of advantages and disadvantages that make it suitable for sampling under specific sets of conditions. No one sampling device is applicable to all sampling situations.  相似文献   

6.
Multiple theoretical sampling designs are studied to determine whether sampling designs can be identified that will provide for characterization of ground water quality in rural regions of developing nations. Sampling design in this work includes assessing sampling frequency, analytical methods, length of sampling period, and requirements of sampling personnel. The results answer a set of questions regarding whether using innovative sampling designs can allow hydrogeologists to take advantage of a range of characterization technologies, sampling strategies, and available personnel to develop high-value, water-quality data sets. Monte Carlo studies are used to assess different sampling strategies in the estimation of three parameters related to a hypothetical chemical observed in a ground water well: mean concentration (MeanC), maximum concentration (MaxC), and total mass load (TML). Five different scenarios are simulated. These scenarios are then subsampled using multiple simulated sampling instruments, time periods (ranging from 1 to 10 years), and sampling frequencies (ranging from weekly to semiannually to parameter dependent). Results are analyzed via the statistics of the resulting estimates, including mean square error, bias, bias squared, and precision. Results suggest that developing a sampling strategy based on what may be considered lower quality instruments can represent a powerful field research approach for estimating select parameters when applied at high frequency. This result suggests the potential utility of using a combination of lower quality instrument and local populations to obtain high frequency data sets in regions where regular monitoring by technicians is not practical.  相似文献   

7.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

8.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

9.
"Valuable information pertaining to contaminant sources, contaminants, and ground water quality was derived using the state-supplied data."  相似文献   

10.
11.
This paper reviews both field and laboratory studies that tested or compared the ability of various types of sampling devices to deliver representative ground water samples. Several types of grab samplers, positive displacement devices, and suction-lift devices were evaluated, Gas-lift and inertial-lift pumps were also evaluated. This study found that most of these devices can. under certain circumstances, alter the chemistry of ground water samples, das-lift pumps, older types of submersible centrifugal pumps, and suction-lift devices are not recommended when sampling for sensitive constituents such as volatile organics and inorganics, or inorganics that are subject to oxidation/precipitation reactions. In general, of the devices reviewed in this paper, bladder pumps gave the best recovery of sensitive constituents. However, better performance could be achieved for several devices if improved operational guidelines were developed by additional testing, especially at lower flow rates. Clearly, further research is warranted. Future studies should focus on pumping rate, flow control mechanisms, and dedication or decontamination of sampling devices.  相似文献   

12.
There is an implicit relationship between the frequency of sampling and the value of information obtained. This relationship is briefly explored by a study of nitrates in aquifers of the Quaternary age and fluorides and sulfates in aquifers of the Cambro-Ordovician age in Iowa. The ambient distribution of these chemicals, in general, is positively skewed with a significant number of observations in the lower end of the feasible range. It is shown that a much broader perspective of the distribution of these chemicals in ground water can be obtained by studying a whole spectrum of parameters (quantiles) ranging from the minimum to the maximum, rather than just the mean or the median alone. Simple random samples of varying sizes drawn from the available data base revealed that many parameters of location, such as the quantiles, of nitrates, fluorides, and sulfates in selected aquifers can be estimated closely by samples of sizes 50, 100 and 250. Results based on such hindsight warrant further investigation of the behavior of sampling distributions of a set of high priority chemicals in different hydrogeological environments.  相似文献   

13.
A suction side sample collector (SSSC) is a contrivance installed hydraulically ahead of the intake port of a pumping device. This paper describes construction and operational details of SSSCs fitted to a submersible pump with packer for use in a 6-inch cased borehole, an air lift pump with packer for use in a 1-inch or 2.5-inch cased borehole, a bladder pump for use in a casing of 2-inch or greater diameter, and a jet pump with packer for use in a 2-inch cased borehole.
Each form of SSSC has been thoroughly tested in ground water quality sampling for volatile organic chemicals. Comparative data for samples collected with the SSSCs and conventional sample collecting gear are presented. The SSSC is demonstrated to be superior to other methods of collecting volatile organic chemical samples owing to its freedom from contamination by the pump delivery line and to its mode of collecting the sample from a position in the well remote from disturbance by the pumping technique.
SSSCs are conveniently decontaminated, easily transported, and can be used to deliver samples to the laboratory while still at formation pressure. The air-lift pumps, described in this paper for use with SSSCs in 1- and 2.5-inch casings, have pumping capacities greater than obtained by other methods that can operate in these small casings. Discharge rates of up to 2 gpm are routinely achieved with the 1-inch model and higher rates are common With the 2.5-inch model. The use of packers with these pumps reduces the time needed to replace the water in the casing with fresh water from the formation.  相似文献   

14.
In this paper, we relate recent developments in ground water sampling techniques to the practical application of sampling for toxic contaminants in ground water. We address the choices that must be made in choosing equipment for a particular project by going through a step-by-step procedure for collecting a ground water sample from a typical monitoring well. Ground water sampling topics that are discussed include: choice of equipment for purging and sampling a well, monitoring for purged ground water indicators and quality assurance/quality control.  相似文献   

15.
A field study was conducted to assess purging requirements for dedicated sampling systems in conventional monitoring wells and for pumps encased in short screens and buried within a shallow sandy aquifer. Low-flow purging methods were used, and wells were purged until water quality indicator parameters (dissolved oxygen, specific conductance, turbidity) and contaminant concentrations (chromate, trichloroethylene, dichloroethylene) reached equilibrium. Eight wells, varying in depth from 4.6 to 15.2 m below ground surface, were studied. The data show that purge volumes were independent of well depth or casing volumes. Contaminant concentrations equilibrated with less than 7.5 I. of purge volume in all wells. Initial contaminant concentration values were generally within 20 percent of final values. Water quality parameters equilibrated in less than 10 L in all wells and were conservative measures for indicating the presence of adjacent formation water. Water quality parameters equilibrated faster in dedicated sampling systems than in portable systems and initial turbidity levels were lower.  相似文献   

16.
Loss of volatile organics during sampling is a well-recognized source of bias in ground water monitoring; sampling protocols attempt to minimize such loss. Such bias could be enhanced for ground water highly charged with dissolved gases such as methane. Such ground water was the object of this study. A positive-displacement bladder pump, a momentum-lift pump and a suction-lift, peristaltic pump were employed in sampling both methane-charged ground water for volatile aromatic hydrocarbons and a CO2-charged reservoir water for volatile chlorinated hydrocarbons. In both cases, the suction-lift pump produced samples with a significant negative bias (9 to 33 percent) relative to the other methods. Little difference between samples produced by the other pump Systems was noted at the field site, but in sampling the reservoir, the bladder pump produced samples that were 13 to 19 percent lower in halocarbon concentration than were samples from the momentum-lift pump.
These negative biases are tentatively interpreted as losses due to volatilization during sampling. Slightly greater negative biases occur for compounds of higher volatility as estimated from their Henry's law constants. Additional studies appear to be warranted in order to adequately establish the scientific basis for recommending protocols for sampling ground water in which degassing could enhance the loss of volatile organics during sampling.  相似文献   

17.
The recognition and assurance of the quality of ground water monitoring data are crucial to the correct assessment of the magnitude and extent of a ground water contamination problem. This article addresses an approach being developed to systematically evaluate the quality of a given set of ground water monitoring data collected during site investigation/ remedial action efforts. The system consists of a checklist of criteria, grouped into four major categories, which can be applied to laboratory or field measurements.
The first category, basis of measurement, considers whether the appropriate sampling, boring and/or analytical methods were chosen to obtain the measurement and the limitations of each method. Secondly, application of the method is assessed. This includes examination of the extent to which procedures were correctly performed, the use of quality control measures and calibration, and possible sources of error in the measurements. Third, evaluation of applied statistical methods is made, with consideration given to which statistics are meaningful in a given context and whether measurements are reproducible. The final category, corroborative information, considers whether independent data or other information are available that add credibility to the values measured.
In this approach, a "high quality" data value is defined as one in which accuracy is supported by meeting the preceding criteria. When accompanied by precision information, high quality data allow for defensible assessments and actions. This evaluation system is useful in developing monitoring programs and in guiding documentation of field and laboratory methods during data collection. It relies heavily on experienced judgment and can be catalyst for the beneficial exchange of knowledge and ideas among ground water professionals.  相似文献   

18.
Uncertainty in ground water hydrology originates from different sources. Neglecting uncertainty in ground water problems can lead to incorrect results and misleading output. Several approaches have been developed to cope with uncertainty in ground water problems. The most widely used methods in uncertainty analysis are Monte Carlo simulation (MCS) and Latin hypercube sampling (LHS), developed from MCS. Despite the simplicity of MCS, many runs are required to achieve a reliable result. This paper presents orthogonal array (OA) sampling as a means to cope with uncertainty in ground water problems. The method was applied to an analytical stream depletion problem. To examine the convergence rate of the OA sampling, the results were compared to MCS and LHS. This study shows that OA can be applied to ground water problems. Results reveal that the convergence rate of the OA sampling is faster than MCS and LHS, with a smaller error of estimate when applied to a stream depletion problem.  相似文献   

19.
The Hydropunch™ is a stainless steel and Teflon® sampling tool that is capable of collecting a representative ground water sample without requiring the installation of a ground water monitoring well. To collect a sample, the Hydropunch (Patent #4669554) is connected to a small-diameter drive pipe and either driven or pushed hydraulically to the desired sampling depth. As the tool is advanced, it remains in the closed position, which prevents soil or water from entering the Hydropunch. Once the desired sampling depth is obtained, the tool is opened to the aquifer by pulling up the drive pipe approximately 1.5 feet (0.46m). In the open position, ground water can flow freely into the sample chamber of the tool. When the sample chamber is full, the Hydropunch is pulled to the surface. As the tool is retracted, check valves close and trap the ground water in the sample chamber. At the surface the sample is transferred from the Hydropunch to an appropriate sample container. The tool is a fast, inexpensive alternative for collecting ground water samples from a discrete interval. It is excellent for vertical profiling or defining the areal extent of a contaminant plume.  相似文献   

20.
A New Multilevel Ground Water Monitoring System Using Multichannel Tubing   总被引:5,自引:0,他引:5  
A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号