首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lower valley of Changjiang, from Wuhan of the Hubei Province in the west to Zhenjiang of the Jiangsu Province in the east, contains more than 200 polymetallic (Cu–Fe–Au, Mo, Zn, Pb, Ag) deposits and is one of the most important metallogenic belts in China. This metallogenic belt, situated at the northern margin of the Yangzi craton and bordered by the Dabieshan ultrahigh pressure metamorphic belt to the north, consists mainly of Cambrian–Triassic marine clastic sedimentary rocks and carbonate and evaporite rocks, which overlay a Precambrian basement and are intruded by Yanshanian (205 to 64 Ma) granitoid intrusions and subvolcanic complexes. Repeated tectonism from Late Proterozoic to Triassic resulted in extensively developed networks of faults and folds involving the Cambrian–Triassic sedimentary strata and the Precambrian basement. The Yanshanian granitoid intrusions and subvolcanic complexes in the Lower Changjiang metallogenic belt are characterized by whole-rock δ18O of +8‰ to +10‰, initial 87Sr/86Sr of 0.704 to 0.708, and εNdt from −10 to −17 and have been interpreted to have originated from mixing between juvenile mantle and old crustal materials. Also, the Yanshanian granitoids exhibit eastward younging and increase in alkalinity (i.e., from older calc–alkaline in the west to younger subalkaline–alkaline in the east), which are related to oblique collision between the Yangzi and Sino-Korean cratons and tectonic evolution from early compressional to late extensional or rifting regimes. Most polymetallic deposits in the Lower Changjiang metallogenic belt are clustered in seven districts where the Yanshanian magmatism is particularly extensive: from west to east, Edong, Jiurui, Anqing–Guichi, Luzhong, Tongling, Ningwu and Ningzhen. Mineralization is characterized by the occurrence of three distinct types of orebodies in individual deposits: orebodies in Yanshanian granitoid intrusions, skarn orebodies at the contact zones between the Yanshanian intrusions and Late Paleozoic–Early Mesozoic sedimentary rocks, and stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata. The most important host sedimentary strata are the Middle Carboniferous Huanglong Formation, Lower Permian and Lower–Middle Triassic carbonate and evaporite rocks. The intrusion-hosted and skarn orebodies exhibit well-developed zonation in alteration assemblages, metal contents, and isotopic compositions within individual deposits, and apparently formed from hydrothermal activities related to the Yanshanian magmatism. The stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata have long been suggested to have formed from sedimentary or volcano-sedimentary exhalative processes in shallow marine environments. However, extensive research over the last 40 years failed to produce unequivocal evidence for syngenetic mineralization. On the basis of geological relationships and isotope geochemical characteristics, we propose a carbonate-hosted replacement deposit model for the genesis of these stratabound massive sulfide orebodies and associated skarn orebodies. This model suggests that epigenetic mineralization resulted from interactions between magmatic fluids evolved from the Yanshanian intrusions with carbonate and evaporite wall rocks. Mineralization was an integral but distal part of the larger hydrothermal systems that formed the proximal skarn orebodies at the contact zones and the intrusion-hosted orebodies. The stratabound massive sulfide deposits of the Lower Changjiang metallogenic belt share many features with the well-studied, high-temperature, carbonate-hosted replacement deposits of northern Mexico and western United States, particularly with respect to association with small, shallow granitoid complexes, structural and stratigraphic controls on mineralization, alteration assemblages, geometry of orebodies, metal association, metal zonation and isotopic systematics.  相似文献   

2.
Nitrogen geochemistry of Upper Carboniferous shales from the Central European Basin (CEB) was investigated by elemental analysis, stable isotope mass spectrometry and non-isothermal pyrolysis. Total N-contents of Namurian shales from four deep wells (4400–7000 m) in NE Germany ranged between 520 and 2680 ppm. Up to 90% of this nitrogen occurs as ammonium in minerals with δ15N values between + 1‰ and + 3.5‰. Low nitrogen contents (down to 460 ppm) and high δ15N values (up to + 5.6‰) in one well in the basin centre suggest a large-scale release of nitrogen associated with isotopic fractionation. Pyrolytic liberation of N2 from pelagic Namurian A shales of NW and NE Germany occurred at significantly lower temperatures than from paralic Namurian B shales and terrestrial Westphalian samples. On-line isotope analysis of N2 liberated between 400 and 1200 °C indicates the presence of precursor pools with different thermal stability and nitrogen isotopic composition.  相似文献   

3.
In the Lower Palaeozoic rocks of the Brabant Massif (Belgium), a recently discovered polysulphide mineralisation is related to a low-angle reverse shear zone. This shear zone has been attributed to the main early Devonian deformation event. Data from boreholes and outcrops allow a detailed investigation of the alteration pattern and palaeofluid flow along this shear zone. Macroscopic observations of the mineralogy and quantitative changes in the phyllosilicate mineralogy indicate that this shear zone is characterised by an envelope of intense sericitisation and silicification. In addition, chloritisation is associated with this alteration. The alteration zone may reach a thickness of 250 m. Ore mineralisation occurred synkinematically and is spatially related to the shear zone. The mineralisation consists of pyrite, marcasite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite, galena, stibnite and smaller amounts of tetrahedrite and other sulphosalts. It is concentrated in quartz–sulphide veins or occurs diffusely in the host rock. The mineralising fluids have a low-salinity H2O–CO2–CH4–NaCl–(KCl) composition and a minimum temperature of 250–320 °C. The δ18O values of quartz vary between +12.3‰ and +14.5‰ SMOW, and δD compositions of the fluid inclusions in the quartz crystals range from −65‰ to −35‰ V-SMOW. The δD and the calculated δ18O values of the mineralising fluids fall in the range typical for metamorphic fluids and partly overlap with that for primary magmatic fluids. The δ34S values, between +4.7‰ and +10.6‰ CDT, fall outside the interval typical for I-type magmas. Important migration of likely metamorphic fluids, causing a widespread alteration and a polysulphide mineralisation along a low-angle shear zone, has, thus, been identified for the first time in the Caledonian Anglo-Brabant fold belt.  相似文献   

4.
Stable (δ13C and δ18O) and radiogenic 87Sr/86Sr isotopic data have been used to investigate the origin of cleat dawsonite (NaAlCO3(OH)2) in the Late Permian Wittingham Coal Measures of the Upper Hunter region in the Sydney Basin, New South Wales. The δ13CPDB values have a narrow range (− 1.7‰ to + 2.4‰), with an average of + 0.3‰, suggesting a magmatic source for the carbon. In contrast, δ18OSMOW values have a wide range (+ 13.6‰ to + 19.8‰), and decrease systematically with decreasing distance from a major intrusion. This systematic variation reflects establishment of localised hydrothermal cells. Water–rock interaction between fluids associated with these hydrothermal cells, and Rb-poor volcaniclastic detritus in the coal measures, produced mantle-like 87Sr/86Sr (0.705032 to 0.706464) in the dawsonite.  相似文献   

5.
The Daduhe gold field comprises several shear-zone-controlled Tertiary lode gold deposits distributed at the eastern margin of the Tibetan Plateau. The deposits are hosted in a Precambrian granite–greenstone terrane within the Yangtze Craton. The gold mineralization occurs mainly as auriferous quartz veins with minor sulphide minerals. Fluid inclusions in pyrite have 3He/4He ratios of 0.16 to 0.86 Ra, whereas their 40Ar/36Ar ratios range from 298 to 3288, indicating a mixing of fluids of mantle and crust origins. The δ34S values of pyrite are of 0.7–4.2‰ (n = 12), suggesting a mantle source or leaching from the mafic country rocks. δ18O values calculated from hydrothermal quartz are between − 1.5‰ and + 6.0‰ and δD values of the fluids in the fluid inclusions in quartz are − 39‰ and − 108‰. These ranges demonstrate a mixing of magmatic/metamorphic and meteoric fluids. The noble gas isotopic data, along with the stable isotopic data suggest that the ore-forming fluids have a dominantly crustal source with a significant mantle component.  相似文献   

6.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

7.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   

8.
Carbon isotope and molecular compositions of Mississippian to Upper Cretaceous mud gases have been examined from four depth profiles across the Western Canada Sedimentary Basin (WCSB). The profiles range from the shallow oil sands in the east (R0 = 0.25) to the very mature sediments in the overthrust zone to the west (R0 = 2.5). In the undisturbed WCSB, δ13C1δ13C2 and δ13C2δ13C3 cross-plots show three maturity and alteration trends: (1) pre-Cretaceous gas sourced from type II kerogen; (2) Cretaceous Colorado Group gas; and (3) Lower Cretaceous Mannville Group biodegraded gas. A fourth set of distinctly different maturity trends is recognized for Lower Cretaceous gas sourced from type III kerogen in the disturbed belt of the WCSB. Displacement of these latter maturity trends to high δ13C2 values suggests that the sampled gas was trapped after earlier formed gas escaped, probably as a result of overthrusting. Unusually 13C-enriched gas (δ13C1 = −34‰, δ13C2 = −13‰, and δ13C3 = 0‰), from the Gething Formation in the disturbed belt, is the result of late stage gas cracking in a closed system. In general, gas maturity is consistent with the maturity of the host sediments in the WCSB, suggesting that migration and mixing of gases was not pervasive on a broad regional and stratigraphic scale. The ‘Deep Basin’ portion of the WCSB is an exception. Here extensive cross-formational homogenization of gases has occurred, in addition to updip migration along the most permeable stratigraphic units.  相似文献   

9.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

10.
Individual and monthly precipitation samples from the polluted atmosphere of Bologna (Emilia-Romagna province) were collected during March 1996 to May 1997 and analyzed for major ions in solution and S isotopes in dissolved SO4.Weighted mean enrichment factors relative to seawater are found to be 1.0 for Na, 15.2 for K, 105 for Ca, 3.3 for Mg, 17.3 for SO4 and 663 for HCO3. Very good positive correlations are observed for the Ca2+–Mg2+–HCO3–SO2−4–NO3 system, indicating that dissolution of Ca (±Mg)-carbonate particles by H2SO4 and HNO3 from combustion of oil and gas is a major process controlling the chemical composition of rain and snow. Na+ and Cl in monthly precipitation derive essentially from sea spray, but the contribution of Na+ from continental sources is appreciable in a number of individual rains. NH+4 appears to be on average more abundant in spring and summer precipitation, its main sources being microbial activity in soils and application of fertilizers. K+ is probably of continental origin from soil dust.The S isotopic composition of SO4 is systematically positive, with mean δ34S values of +3.2±1.6‰ (n=40) in individual precipitation and +2.8±1.4‰ (n=12) in monthly precipitation. These isotopic compositions are interpreted in terms of a dominant contribution of S from anthropogenic emissions and subordinate contributions from biogenic and marine sources. Pollutant SO4 is estimated to have a δ34S value in the range +2.5 to +4.5‰, whereas a distinctive δ34S of −4.5‰ or lower indicates SO4 from oxidation of biogenic gases.The isotopic and chemical compositions of SO4 do not depend on wind direction, thus testifying to a mostly local source for pollutant S in the Bologna atmosphere.  相似文献   

11.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

12.
Ordos Basin, the second largest sedimentary basin in China, contains enormous natural gas resources. Each of the four giant gas fields discovered so far in this basin (i.e., Sulige, Yulin, Wushenqi and Jingbian) has over 100 billion cubic meters (bcm) or 3.53 trillion cubic feet (tcf) of proven gas reserves. This study examines the stable carbon isotope data of 125 gas samples collected from the four giant gas fields in the Ordos Basin. Source rocks in the Upper Paleozoic coal measures are suggested by the generally high δ13C values of C1–C4 gaseous hydrocarbons in the gases from the Sulige, Yulin and Wushenqi gas fields. While the δ13CiC4 value is higher than that of the δ13CnC4, the dominant ranges for the δ13C1, δ13C2, and δ13C3 values in these Upper Paleozoic reservoired gases are −34 to −32‰, −27 to −23‰, and −25 to −24‰, respectively. The δ13C values of methane, benzene and toluene in gases from the Lower Paleozoic reservoirs of the Jingbian field indicate a significant contribution from humic source rocks, as they are similar to those in the Upper Paleozoic reservoirs of the Sulige, Yulin and Wushenqi gas fields. However, the wide variation and reversal in the δ13C1, δ13C2 and δ13C3 values in the Jinbian gases cannot be explained using a single source scenario, thus the gases were likely derived dominantly from the Carboniferous-Permian coal measures with some contribution from the carbonates in the Lower Permian Taiyuan Formation. The gas isotope data and extremely low total organic carbon contents (<0.2% TOC) suggest that the Ordovician Majiagou Formation carbonates are unlikely to be a significant gas source rock, thus almost all of the economic gas accumulations in the Ordos Basin were derived from Upper Paleozoic source rocks.  相似文献   

13.
The Tuwu–Yandong porphyry copper belt lies in the eastern Tianshan mountains, eastern section of the Central Asian orogenic belt. The copper mineralization is mainly hosted in plagiogranite porphyries intruded into early Carboniferous volcanic rocks of the Paleozoic Dananhu island arc between the Tarim and Siberian plates. The plagiogranite porphyries have contents of 65–73 wt% SiO2, 14–17 wt% Al2O3, 0.9–2.2 wt% MgO, 3–16 ppm Y, 0.4–1.40 ppm Yb, 347–920 ppm Sr, and positive Eu anomalies. The rocks also exhibit positive ɛ Nd(t) values (+5.0 to +9.4) and low initial 87Sr/86Sr values (0.70316–0.70378). Such features are similar to those of adakites derived from partial melting of a subduction-related oceanic slab. The mineralization age is early Carboniferous (350–320 Ma), which is close to that of the porphyries. The close relationship between the Cu mineralization and the porphyry is also indicated by their similar Sr-Nd-Pb isotopic compositions. We suggest that the copper porphyry (magma) system in the Dananhu island arc was formed by direct melting of an obliquely subducting early Carboniferous oceanic slab.  相似文献   

14.
Sulfur and O isotope analyses of dissolved SO4 were used to constrain a hydrogeological model for the area overlying the Gorleben–Rambow Salt Structure, Northern Germany. Samples were collected from 80 wells screened at different depth-intervals. The study area consists of a set of two vertically stacked aquifer systems. Generally, the isotope data show a good spatial correlation, outlining well-defined groundwater zones containing SO4 of characteristic isotopic composition. Highly saline waters from deeper parts of the lower aquifer system are characterized by rather constant SO4 isotopic compositions, which are typical of Permian Zechstein evaporites (δ34S=9.6–11.9‰; δ18O=9.5–12.1‰). Above this is a transition zone containing ground waters of intermediate salinity and slightly higher isotopic values (average δ34S=16.6‰; δ18O=15.3‰). The confined groundwater horizon on the top of the lower aquifer system below the low permeable Hamburg Clays is low in total dissolved solids and is characterized by an extreme 34S enrichment (average δ34S=39.1‰; δ18O=18.4‰), suggesting that bacterially mediated SO4 reduction is a dominant geochemical process in this zone. Two areas of distinct isotopic composition can be identified in the shallow ground water horizons of the upper hydrogeological system. Sulfate in groundwaters adjacent to the river Elbe and Löcknitz has a typical meteoric isotopic signature (δ34S=5.2‰; δ18O=8.2‰), whereas the central part of the area is characterized by more elevated isotopic ratios (δ34S=12.7‰; δ18O=15.6‰). The two major SO4 pools in the area are represented by Permian seawater SO4 and a SO4 of meteoric origin that has been mixed with SO4 resulting from the oxidation of pyrite. It is suggested that the S-isotope compositions observed reflect the nature of the SO4 source that have been modified to various extent by bacterial SO4 reduction. Groundwaters with transitional salinity have resulted from mixing between brines and low-mineralized waters affected by bacterial SO4 reduction.  相似文献   

15.
For the ammonia-oxidizing bacterium Nitrosomonas europaea, grown autotrophically using semicontinuous culturing, average biomass was depleted in 13C relative to CO2 dissolved in the medium by ca. 20‰ and the total-lipid extract was depleted in 13C relative to biomass by 3.7‰. The n-alkyl lipids (weighted average of fatty acids) and isoprenoid lipids (weighted average of hopanoids) were both depleted in 13C relative to biomass by about 9‰. The large depletion in the isoprenoid lipids seems to indicate that isotopic fractionations associated with the biosynthesis of methylerythritol phosphate (MEP) affected at least two carbon positions in each isoprene unit. Among the fatty acids, trans-9-hexadecenoic acid was most depleted (13.0‰ relative to biomass), followed by cis-9- hexadecenoic acid (9.6‰) and hexadecanoic acid (6.9‰). Isotopic relationships between the three acids suggest that significant isotope effects were associated with the desaturation and cis to trans isomerization of fatty acids. Given these observations, hopanoids produced by ammonia-oxidizing bacteria growing in natural waters are likely to be depleted in 13C by 26–30‰ relative to dissolved CO2. Since CO2 at aquatic oxyclines is often depleted in 13C, the range of δ values expected for hopanoids is ca. −34‰ to −55‰. The δ values of geohopanoids observed in numerous studies and attributed to unspecified chemoautotrophs fall within this range.  相似文献   

16.
Inorganic gases are commonly seen in eastern China and occasionally in southern China from the shallow water columns above hot and cold springs. The gases contain 68% to nearly 100% CO2, with δ13CCO2 and δ13C1 values in the range of −1.18‰ to −6.00‰ and −19.48‰ to −24.94‰, respectively. All of the 34 large inorganic CO2 and one inorganic methane accumulations discovered in China are distributed in eastern parts of the country, from both onshore and continental shelf basins. No commercial inorganic gas accumulation has been found in central and western China. This is a review of the occurrence and geochemical characteristics of inorganic gas accumulations in Chinese sedimentary basins. A detailed study of gas samples collected from four representative inorganic CO2 pools and one possible inorganic methane pool indicates that inorganic alkane gases typically show δ13C1 values greater than −10‰ versus PDB (mostly −30‰), with a positive stable carbon isotope sequence of δ13C1 < δ 13C2 < δ13C3 < δ 13C4. In contrast, the δ13C1 values of biogenic alkane gases are lighter than −30‰, with a negative isotope sequence (i.e. δ13C1 > δ13C2 > δ 13C3 > δ13C4). Inorganic gases also tend to show less negative δ13CCO2 values (−10‰) than biogenic gases (<−10‰).  相似文献   

17.
Carbon isotope chemostratigraphy has been used for worldwide correlation of Precambrian/Cambrian (Pc/C) boundary sections, and has elucidated significant change of the carbon cycle during the rapid diversification of skeletal metazoa (i.e. the Cambrian Explosion). Nevertheless, the standard δ13C curve of the Early Cambrian has been poorly established mainly due to the lack of a continuous stratigraphic record. Here we report high-resolution δ13C chemostratigraphy of a drill core sample across the Pc/C boundary in the Three Gorge area, South China. This section extends from an uppermost Ediacaran dolostone (Dengying Fm.), through a lowermost Early Cambrian muddy limestone (Yanjiahe Fm.) to a middle Early Cambrian calcareous black shale (Shuijingtuo Fm.). As a result, we have identified two positive and two negative isotope excursions within this interval. Near the Pc/C boundary, the δ13Ccarb increases moderately from 0 to + 2‰ (positive excursion 1: P1), and then drops dramatically down to − 7‰ (negative excursion 1: N1). Subsequently, the δ13Ccarb increases continuously up to about + 5‰ at the upper part of the Nemakit–Daldynian stage. After this positive excursion, δ13Ccarb sharply decreases down to about − 9‰ (N2) just below the basal Tommotian unconformity. These continuous patterns of the δ13C shift are irrespective of lithotype, suggesting a primary origin of the record. Moreover, the obtained δ13C profile, except for the sharp excursion N2, is comparable to records of other sections within and outside of the Yangtze Platform. Hence, we conclude that the general feature of our δ13C profile best represents the global change in seawater chemistry. The minimum δ13C of the N1 (− 7‰) is slightly lower than carbon input from the mantle, thus implying an enhanced flux of 13C-depleted carbon just across the Pc/C boundary. Hence, the ocean at that time probably became anoxic, which may have affected the survival of sessile or benthic Ediacaran biota. The subsequent δ13C rise up to + 5‰ (P2) indicates an increase of primary productivity or an enhanced rate of organic carbon burial, which should have resulted in lowering pCO2 and following global cooling. This scenario accounts for the cause of the global-scale sea-level fall at the base of the Tommotian stage. The subsequent, very short-term, and exceptionally low δ13C (− 9‰) in N2 could have been associated with the release of methane from gas hydrates due to the sea-level fall. The inferred dramatic environmental changes (i.e., ocean anoxia, increasing productivity, global cooling and subsequent sea-level fall with methane release) appear to coincide with or occur just before the Cambrian Explosion. This may indicate synchronism between the environmental changes and rapid diversification of skeletal metazoa.  相似文献   

18.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

19.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

20.
Cl-37 in the Dead Sea system---preliminary results   总被引:1,自引:0,他引:1  
This study presents the first set of δ measurements in the Dead Sea environment. δ values for the meromictic (long term stratified) Dead Sea water column prior to its complete overturn in 1979 were −0.47‰ SMOC for the UWM (Upper Water Mass) and +0.55‰ SMOC for the LWM (Lower Water Mass). The δ values for the pre-overturn Dead Sea cannot be explained by the prevailing model on the evolution of the Dead Sea during the last few centuries and require corroboration by more measurements. The 1979 overturn wiped out almost completely the isotopic differences between the UWM and LWM. Even so, Cl isotope data could be used to decipher physical processes related to the overturn such as incomplete homogenization of the deep water mass. Inputs into the lake, comprising freshwaters (springs and the Jordan River) and saline springs gave a range of −0.37‰ to +1.0‰ with the freshwater sources being more enriched in δ . Based on the δ measurements of the End-Brine (the effluent from Dead Sea evaporation ponds) and of recent Dead Sea halite, the Cl isotopic composition of the originating brines have been estimated. They gave a narrow isotopic spread, +0.01‰ and +0.07‰ and fall within the same range with Dead Sea pore water (+0.13‰) and with the post-overturn Dead Sea (−0.03‰ and +0.16‰). Rock salt from Mount Sdom gave a value of −0.59‰ indicating its formation at the last stages of halite deposition from evaporating sea water. The hypersaline En Ashlag spring gave a depleted δ value of −0.32‰, corresponding to a residual brine formed in the very latest stages (including bishofite deposition) of seawater evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号