首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GSTARS is a series of computer models developed by the U.S. Bureau of Reclamation for alluvial river and reservoir sedimentation studies while the authors were employed by that agency. The first version of GSTARS was released in 1986 using Fortran IV for mainframe computers. GSTARS 2.0 was released in 1998 for personal computer application with most of the code in the original GSTARS revised, improved, and expanded using Fortran IV/77. GSTARS 2.1 is an improved and revised GSTARS 2.0 with graphical user interface. The unique features of all GSTARS models are the conjunctive use of the stream tube concept and of the minimum stream power theory. The application of minimum stream power theory allows the determination of optimum channel geometry with variable channel width and cross-sectional shape. The use of the stream tube concept enables the simulation of river hydraulics using one-dimensional numerical solutions to obtain a semi-two- dimensional presentation of the hydraulic conditions along and across an alluvial channel. According to the stream tube concept, no water or sediment particles can cross the walls of stream tubes, which is valid for many natural rivers. At and near sharp bends, however, sediment particles may cross the boundaries of stream tubes. GSTARS3, based on FORTRAN 90/95, addresses this phenomenon and further expands the capabilities of GSTARS 2.1 for cohesive and non-cohesive sediment transport in rivers and reservoirs. This paper presents the concepts, methods, and techniques used to develop the GSTARS series of computer models, especially GSTARS3.  相似文献   

2.
GSTARS computer models and their applications, Part Ⅱ: Applications   总被引:2,自引:2,他引:0  
In part 1 of this two-paper series, a brief summary of the basic concepts and theories used in developing the Generalized Stream Tube model for Alluvial River Simulation (GSTARS) computer models was presented. Part 2 provides examples that illustrate some of the capabilities of the GSTARS models and how they can be applied to solve a wide range of river and reservoir sedimentation problems. Laboratory and field case studies are used and the examples show representative applications of the earlier and of the more recent versions of GSTARS. Some of the more recent capabilities implemented in GSTARS3, one of the latest versions of the series, are also discussed here with more detail.  相似文献   

3.
In part 1 of this two-paper series, a brief summary of the basic concepts and theories used in developing the Generalized Stream Tube model for Alluvial River Simulation (GSTARS) computer models was presented. Part 2 provides examples that illustrate some of the capabilities of the GSTARS models and how they can be applied to solve a wide range of river and reservoir sedimentation problems. Laboratory and field case studies are used and the examples show representative applications of the earlier and of the more recent versions of GSTARS. Some of the more recent capabilities implemented in GSTARS3, one of the latest versions of the series, are also discussed here with more detail.  相似文献   

4.
It is generally acceptable to assume that bed material load is equal to sediment transport capacity, if the exchange between bed and flow occurs instantaneously. However, for non-equilibrium sediment t...  相似文献   

5.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   

6.
A simple two-dimensional dam-break model is developed for flood plain study purposes. Both a finite difference grid and an irregular triangle element integrated finite difference formulation are presented. The governing flow equations are approximately solved as a diffusion model coupled to the equation of continuity. Application of the model to a hypothetical dam-break study indicates that the approach can be used to predict a two-dimensional dam-break flood plain over a broad, flat plain more accurately than a one-dimensional model, especially when the flow can break-out of the main channel and then return to the channel at other downstream reaches.  相似文献   

7.
针对现有的河道水流洪水演算模型只能模拟单一变量(流量或水位)的问题,以水流连续方程和河段蓄水量的两种不同表达形式(蓄水量等于平均过水断面面积与河段长乘积,蓄水量等于河段平均流量与传播时间的乘积)为基础,对马斯京根模型进行了通用性改进,提出了双变量耦合通用演算模型.选取了四大水系(包括内陆河流和入海河流)的16个河段汛期洪水资料进行模型检验,模型验证考虑了地理范围、不同的河段特征和水力特征、洪水量级等因素,全面地检验了模型结构的合理性和模拟实际洪水的有效性.将双变量耦合通用演算模型与传统的马斯京根法进行了效果比较,结果表明双变量耦合通用演算模型的模拟精度高于马斯京根法,模拟效果比马斯京根法稳定一些,而且具有较好的通用性.  相似文献   

8.
1 INTRODUCTIONThe fluvial processes such as transihon of river pattrms, bank chat and advance, sedimentation anderosion of flood plains and channel beds can be Observed in alluvial rivers. These fluvial PrOcesses are allattributed to variations of the sediment caping caPacity of the flow and the erodibillty of bank matrialor soil. A river sechon may be widened by bank erosion and failure.For examPle, a river channel downstream of a reservoir is scoured because the flow released frOm the…  相似文献   

9.
Dike breaking is a disaster that could cause extensive damage. It could lead to flood flows outside the dike and induce water level fluctuations in the main channel. Numerical models are increasingly used to simulate flood flows due to dike-break, because direct observations from field surveys and physical models are rather limited. Existing knowledge concerning dam-break flows cannot be applied directly to dike-break flows because the effect of channel discharge cannot be neglected in the latter. In this study,physical experiments are done in a large laboratory flume to simulate the process of dike-break induced flood wave propagation in the floodplain and flow fluctuations in the main channel. The variations of water levels and velocities are measured and recorded using an array of pressure sensors and two acoustic Doppler velocimetry devices. A numerical model has been set up according to the experimental layout. The experiments have high repeatability and the numerical model predictions agree closely with the physical model data. The experimental results provide reliable information for improving the understanding of dike-break flow dynamics and for the verification of numerical models.  相似文献   

10.
A model to simulate channel changes in ephemeral river channels and to test the effects of hydrological changes due to climate change and[sol ]or land use change was developed under the auspices of the EU funded MEDALUS programme (Mediterranean Desertification and Land Use). The model, CHANGISM (Channel Change GIS Simulation Model), is designed to simulate the effect of channel flow events and of climate conditions on morphology, sediment and vegetation, through sequences of events and conditions, over periods of up to several decades. The modelling is based on cellular automata but with calculations for water and sediment continuity. Process rules have both deterministic and stochastic elements. An important feature of the model is that it incorporates feedback elements between each event. The main aim of the model is to indicate the likely outcomes of events and combinations of conditions. It is linked to GIS for both input and output. The modelling is based on a channel reach and state is input as GIS layers of morphology (DEM), sediment and vegetation cover and state. Other initial conditions of soil moisture, groundwater level, and overall gradient are input. Parameters for processes are read from tables and can be easily changed for successive runs of the model. The bases for decisions on process specifications are discussed in this paper. Initial tests of the operation and sensitivity of the model were made on idealized reaches. The model was then tested using data from monitored sites in SE Spain. Simulations using clearwater flow worked well but initial simulations using events with sediment loads showed some tendency for excess deposition. Further tests and modifications are taking place. Overall, the model is one of the most sophisticated that simulates the interaction of flows with sediment and vegetation and the outcomes in terms of erosion, deposition, morphology, sediment cover, vegetation cover and plant survival over periods of up to 30 years for the scale of a channel reach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Recent research modelling floodplain inundation processes has concentrated on issues surrounding the level of physical, topographical, and numerical solver complexity needed to represent floodplain flows adequately. However, during flooding episodes the channel typically still conveys the bulk of the flow. Despite this, the effect of channel physical processes and topographic complexity on model results has been largely unexplored. To address this, the impact of channel cross‐section geometry, channel long‐profile variability and the representation of hydraulic structures on floodplain inundation are explored using a coupled dynamic 1D‐2D hydraulic model (ESTRY‐TUFLOW) of the Carlisle floods of January 2005. These simulations are compared with those from a simplified 1D‐2D model, LISFLOOD‐FP. In this case, the simpler model is sufficient to simulate the far‐field peak flood elevations. However, comparison of channel dynamics suggests that the full shallow water approximation used by ESTRY‐TUFLOW gives a more robust performance when models calibrated on maximum floodplain water elevations are used to predict channel water levels. Examination of the response of ESTRY‐TUFLOW to variations in channel geometric complexity shows that downstream variations in the channel long profile are more important than cross‐section variability for obtaining a dataset‐independent calibration. The results show, in general, that as model physical complexity is increased, calibrated parameters become less ‘effective’, and as a consequence, the values of performance measures reduce less rapidly away from the optimum value. This means that often more physically complex models are less likely to yield different optimum parameter values when calibrated on different datasets resulting in a more robust numerical model. Lastly, the inclusion of bridge structures can simulate substantial local backwatering effects, but the variability in observed water and wrack marks is such that it is not possible to discern the effect of the bridges at this site in the post‐event observational dataset. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
桩靴贯入阻力的准确预测是自升式钻井平台安全作业的前提。通过小比尺模型试验,研究饱和砂土中桩靴贯入速度对筒型桩靴插桩性能的影响,并基于地基承载力理论提出筒型桩靴贯入阻力的计算方法,进而采用CEL有限元方法模拟筒型桩靴的贯入过程,并与试验结果进行比较。研究发现:当模型试验中桩靴贯入速度在0.1~0.3mm/s时,桩靴的贯入可看作是准静态过程,此时贯入阻力变化不大,采用基于地基承载力理论中的Hansen公式和Vesic公式可较为准确地计算出对应某一深度的贯入阻力;CEL有限元方法可有效模拟筒型桩靴的贯入过程,当桩靴的贯入速度为0.1~0.3mm/s时,数值模拟结果与试验结果吻合较好。  相似文献   

13.
To enhance the utilization efficiency of farmland irrigation water and reduce the leakage of water conveyance channels, the leakage process of channels was simulated dynamically. The simulated results were compared with data measured in laboratory experiments, and the performance of the model was evaluated. The results indicated that the simulated values of the model were consistent with the observation values, and the R2 values varied between 0.91 and 0.99. In addition, based on the laboratory experiments, a water supply system (Mariotte bottles) and soil box were built using plexiglass. Three influencing factors, namely, the channel form, soil texture and channel cross-sectional area, were varied to observe and calculate the resulting cumulative infiltration amount, infiltration rate and wetting front migration distance. HYDRUS-3D software was used to solve the three-dimensional soil water movement equation under different initial conditions. The results demonstrated that the U-shaped channel was more effective than the trapezoidal channel in increasing the utilization efficiency of the water resources. A U-shaped channel with a small channel cross-sectional area should be adopted and the soil particle size should be prioritized in the construction of water conveyance channels for farmlands. The simulation results were in agreement with the observed results, which indicates that HYDRUS-3D is a reliable tool that can accurately simulate the soil moisture movement in water conveyance channels. The research results can provide a reference for the design and operation of farmland irrigation systems.  相似文献   

14.
《水文科学杂志》2012,57(2):183-199
ABSTRACT

Current estimations of sediment transport at the watershed scale are limited by the difficulty of accurately simulating the sediment transfer along the main stem. The typical approach to simulating watershed sediment transport involves the adoption of hydrologic sediment routing schemes that do not fully capture the contribution and timing of side tributaries, and the inclusion of a simplified channel geometry that does not include its hydraulic feedback. In this paper, we present the results of a coupled hydrologic-hydraulic model of sediment transport applied to a small watershed of Iowa. The model was developed to simulate both the hydrologic network and non-equilibrium sediment transport that occur during a flood. The model results highlight the importance of including side tributaries in order to capture a realistic duration of shear stress that ultimately affects sediment transport. Comparisons with bank erosion measurements indicate that the presented approach is also promising to estimate sediment sources along the main stem.  相似文献   

15.
The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering.A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions.In this paper,a numerical formulation,which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening,contact,friction and shear dilatation into the XFEM,is proposed to describe various crack behaviors of concrete material.An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced.The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests.It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures.The influence of mode-Ⅱ parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.  相似文献   

16.
1 INTRODUCTION Evolution of the river bed in alluvial channels has been studied by many researchers using analytical and numerical approaches. The use of analytical approach alone is insufficient for solving natural river engineering problems. With rapid growth in computer technology, numerical models have become a popular means for the study of mobile bed hydraulics. During the past decade, several numerical models have been developed. Most of the computer codes, such as HEC2SR (Si…  相似文献   

17.
高强钢组合偏心支撑钢框架是一种新型的抗震结构体系,为分析其抗震性能,利用ABAQUS有限元软件建立了简化分析模型。在验证该简化模型合理有效的基础上,建立了某十层算例的整体模型,施加竖向荷载的同时施加水平倒三角形循环荷载作用,进而分析了该算例的滞回性能。研究表明:本文提出的简化分析模型不仅可以较准确的模拟该结构体系的延性和抗侧刚度,还可以有效预测结构的变形分布和非线性性能。  相似文献   

18.
交替方向隐式差分(ADI-FDTD)法突破了Courand-Friedrich-Levy(CFL)条件的约束,具有无条件稳定的特点;而单轴各向异性完全匹配层(UPML)边界条件具有宽频带吸收特性,不需要对电场和磁场进行分裂,迭代公式简单,便于编程的特点.综合两者优势,本文提出了基于UPML边界条件的ADI-FDTD探地雷达数值模拟算法,通过对3个二维Maxwell方程进行离散化,推导了GPR波的ADI-FDTD及其UPML边界条件的两个子时间步的迭代差分公式,并分别给出了详细计算步骤.在此基础上,开发了相应的模拟程序,应用该程序对两个GPR模型进行了正演模拟,得到了两个正演模型的wiggle图、扫描图与全波场快照.通过分析这些雷达剖面图与波场快照,可以了解雷达波形在空间中的传播过程及变化规律,有助于雷达资料更可靠、更准确的解释.模拟结果表明,基于UPML边界条件的ADI-FDTD算法可取较大的时间步长,消除了截断边界处的强反射,能对简单与复杂GPR模型进行快速、高效模拟.  相似文献   

19.
This paper presents a three-dimensional (3-D) numerical model to simulate morphological changes in alluvial channels due to bank erosion. A method for the simulation of bank erosion is established. This is incorporated into a 3-D mathematical model for turbulent flow and non-uniform, non-equilibrium sediment transport. This model is applied to simulate morphological changes in the Shishou bend of the middle Yangtze River in China, where serious bank erosions occurred during the last two decades. The double-layer sediment structure of the riverbank on the middle Yangtze River is taken into account in the bank erosion module. Both cohesive and non-cohesive bank material in the different layers are considered. The bank erosion module also includes other factors affecting the rate of bank erosion, such as the longitudinal length of failed bank, the thickness of each layer in the double-layer structure, and the erosion-resisting effect of cohesive material from the top layer of failed bank. A locally-adaptive grid system is proposed to efficiently simulate the lateral migration of alluvial channel due to bank erosion. The predictive capability of the 3-D model is examined by laboratory data. Simulated processes of bank erosion agree with field observations in the Shishou bend during the period of October 1996–October 1998, and the bank erosion module plays a significant role in simulating morphological changes of the study reach. In addition, the equivalent channel-forming discharge, which is defined as a constant discharge that can create the same amount of bank erosion in an alluvial channel as that created by natural runoff processes during the same period of time, is proposed to improve calculation efficiency for feasibility studies.  相似文献   

20.
Feedback mechanisms, which operate upstream through drawdown and backwater effects and downstream through sediment discharge are responsible for channel evolution. By combining these mechanisms with channel processes it euables a dynamic process-response model to be developed to simulate the initial evolution of straight gravel-bed channels. When erosion commences on a land surface, sediment entrained in the headwater reach by hydraulic action is selectively transported, deposited and reworked. This produces a damped oscillation between degradation and aggradation as the channel and valley respond to spatial and temporal variations in sediment calibre and hydraulic conditions. The initial cut and fill phases are responsible for valley incision and floodplain development while secondary and subsequent activity can produce river terraces. Eventually sediment entrainment in the headwaters declines as slopes are reduced. Subsequent channel evolution is relatively insignificant because it is dependent on local weathering activity producing material that can be transported on declining slopes. Therefore landforms produced during the initial phase of development, when local weathering was non-limiting, dominate the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号