首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field study of trace gas emissions from biomass burning in Equatorial Africa gave methyl chloride emission ratios of 4.3×10–5±0.8×10–5 mol CH3Cl/mol CO2. Based on the global emission rates for CO2 from biomass burning we estimate a range of 226–904×109 g/y as global emission rate with a best estimate of 515×109 g/y. This is somewhat lower than a previous estimate which has been based on laboratory studies. Nevertheless, our emission rate estimates correspond to 10–40% of the global turnover of methyl chloride and thus support the importance of biomass burning as methyl chloride source. The emission ratios for other halocarbons (CH2Cl2, CHCl3, CCl4, CH3CCl3, C2HCl3, C2Cl4, F-113) are lower. In general there seems to be a substantial decrease with increasing complexity of the compounds and number of halogen atoms. For dichloromethane biomass burning still contributes significantly to the total global budget and in the Southern Hemisphere biomass burning is probably the most important source for atmospheric dichloromethane. For the global budgets of other halocarbons biomass burning is of very limited relevance.  相似文献   

2.
Deforestation in Brazilian Amazonia is a significant source of greenhouse gases today and, with almost 90% of the originally forested area still uncleared, is a very large potential source of future emissions. The 1990 rate of loss of forest (13.8 × 103 km2/year) and cerrado savanna (approximately 5 × 103 km2/year) was responsible for releasing approximately 261 × 106 metric tons of carbon (106 t C) in the form of CO2, or 274–285 × 106 t of CO2-equivalent C considering IPCC 1994 global warming potentials for trace gases over a 100-year horizon. These calculations consider conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest, and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as net committed emissions, or the gases released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. For low and high trace gas scenarios, respectively, 1990 clearing produced net committed emissions (in 106 t of gas) of 957–958 for CO2, 1.10–1.42 for CH4, 28–35 for CO, 0.06–0.16 for N2O, 0.74–0.74 for NOx and 0.58–1.16 for non-methane hydrocarbons.  相似文献   

3.
Biomass burning has important impacts on atmospheric chemistry and climate. Fires in tropical forests and savannas release large quantities of trace gases and particulate matter. Combustion of biofuels for cooking and heating constitutes a less spectacular but similarly widespread biomass burning activity. To provide the groundwork for a quantification of this source, we determined in rural Zimbabwe the emissions of CO2, CO, and NO from more than 100 domestic fires fueled by wood, agricultural residues, and dung. The results indicate that, compared to open savanna fires, emissions from domestic fires are shifted towards products of incomplete combustion. A tentative global analysis shows that the source strength of domestic biomass burning is on the order of 1500 Tg CO2–C yr–1, 140 Tg CO–C yr–1, and 2.5 Tg NO–N yr–1. This represents contributions of about 7 to 20% to the global budget of these gases.  相似文献   

4.
Large carbon dioxide plumes with concentrations up to 45 ppm aboveambient levels were measured about 15 km downwind of the Prudhoe Bay, Alaskamajor oil production facilities, located at 70° N Lat. above the ArcticCircle. The measured emissions were 1.3 × 103 metrictons (C) hour-1 (11.4× 106 metric tons(C) year-1), six times greater than the combustion emissionsassumed by Jaffe and coworkers in J. Atmos. Chem. 20 (1995), 213–227,based on 1989 reported Prudhoe Bay oil facility fuel consumption data, andfour times greater than the total C emissions reported by the oil facilitiesfor the same months as the measurement time periods. Variations in theemissions were estimated by extrapolating the observed emissions at a singlealtitude for all tundra research transect flights conducted downwind of theoil fields. These 30 flights yielded an average emission rate of1.02 × 103 metric tons (C) hour-1 with astandard deviation of 0.33 × 103. These quantity ofemissions are roughly equivalent to the carbon dioxide emissions of7–10 million hectares of arctic tussock tundra (Oechel and Vourlitis,Trends in Ecol. Evolution 9 (1994), 324–329).  相似文献   

5.
The stable carbon isotope ratios of nonmethane hydrocarbons (NMHC) and methyl chloride emitted from biomass burning were determined by analyzing seven whole air samples collected during different phases of the burning process as part of a laboratory study of wood burning. The average of the stable carbon isotope ratios of emitted alkanes, alkenes and aromatic compounds is identical to that of the burnt fuel; more than 50% of the values are within a range of ±1.5 of thecomposition of the burnt fuel wood. Thus for the majority of NMHC emitted from biomass burning stable carbon isotope ratio of the burnt fuel a good first order approximation for the isotopic composition of the emissions. Of the more than twenty compounds we studied, only methyl chloride and ethyne differed in stable carbon isotope ratios by more than a few per mil from the composition of the fuel. Ethyne is enriched in 13C by approximately 20–30, and most of the variability can beexplained by a dependence on flame temperature. The 13C values decreaseby 0.019 /K (±0.0053/K) with increasing temperature. Methyl chloride is highly depleted in 13C, on average by25. However the results cover a wide range of nearly 30. Specifically, in two measurements with wood from Eucalyptus (Eucalyptus delegatensis) as fuel we observed the emission of extremely light methyl chloride (–68.5and–65.5). This coincides with higher than average emission ratiosfor methyl chloride (15.5 × 10–5 and 18 ×10–5 mol CH3Cl/mol CO2). These high emission ratios are consistent with the highchlorine content of the burnt fuel, although, due to the limited number of measurements, it would be premature to generalize these findings. The limited number of observations also prevents any conclusion on a systematic dependence between chlorine content of the fuel, emission ratios and stable carbon isotope ratio of methyl chloride emissions. However, our results show that a detailed understanding of the emissions of methyl chloride from chloride rich fuels is important for understanding its global budget. It is also evident that the usefulness of stable carbon isotope ratios to constrain the global budget of methyl chloride will be complicated by the very large variability of the stable carbon isotope ratio of biomass burning emissions. Nevertheless, ultimately the large fractionation may provide additional constraints for the contribution of biomass burning emissions to the atmospheric budget of methyl chloride.  相似文献   

6.
In order to estimate the production of charcoal and the atmospheric emissions of trace gases volatilized by burning we have estimated the global amounts of biomass which are affected by fires. We have roughly calculated annual gross burning rates ranging between about 5 Pg and 9 Pg (1 Pg = 1015 g) of dry matter (2–4 Pg C). In comparison, about 9–17 Pg of above-ground dry matter (4–8 Pg C) is exposed to fires, indicating a worldwide average burning efficiency of about 50%. The production of dead below-ground dry matter varies between 6–9 Pg per year. We have tentatively indicated the possibility of a large production of elemental carbon (0.5–1.7 Pg C/yr) due to the incomplete combustion of biomass to charcoal. This provides a sink for atmospheric CO2, which would have been particularly important during the past centuries. From meager statistical information and often ill-documented statements in the literature, it is extremely difficult to calculate the net carbon release rates to the atmosphere from the biomass changes which take place, especially in the tropics. All together, we calculate an overall effect lof the biosphere on the atmospheric carbon dioxide budget which may range between the possibilities of a net uptake or a net release of about 2 Pg C/yr. The release of CO2 to the atmosphere by deforestation projects may well be balanced by reforestation and by the production of charcoal. Better information is needed, however, to make these estimates more reliable.Now at the Max-Planck-Institute for Chemistry, Mainz, FRG.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
The annual trace gas emissions from a West African rural region were calculated using direct observations of gas emissions and burning practices, and the findings compared to the guidelines published by the IPCC. This local-scale study was conducted around the village of Dalun in the Northern Region of Ghana, near the regional capital of Tamale. Two types of fires were found in the region – agricultural fires andwildfires. Agricultural fires are intentionally set in order to remove shrub and crop residues; wildfires are mostly ignited by herders to remove inedible grasses and to promote the growth of fresh grass. An agricultural fire is ignited with a fire front moving against the wind (backfire), whereas a wildfire moves with the wind (headfire). Gas emissions (CO2, CO and NO) weremeasured by burning eight experimental plots, simulating both headfires and backfires. A common method of evaluating burning conditions is to calculate modified combustion efficiency (MCE), which expresses the percentage of the trace gases released as CO2. Modified combustion efficiency was95% in the wildfires burned as headfires, but only 90% in the backfires.The burned area in the study region was determined by classifying a SPOT HRV satellite image taken about two months into the dry season. Fires were classified as either old burned areas or new burned areas as determined by the gradient in moisture content in the vegetation from the onset of the dry season. Classified burned areas were subsequently divided into two classes depending on whether the location was in the cultivated area or in the rangeland area, this sub-classification thus indicating whether the fire had been burned as a backfire or headfire. Findings showed that the burned area was 48% of the total region, and that the ratio of lowland wildfiresto agricultural fires was 3:1. The net trace gas release from the classified vegetation burnings were extrapolated to 26–46×108 gCO2, 78–302×106 g CO,17–156×105 g CH4,16–168×105 g NMHC and 11–72×103 NOx. Calculation of the emissionsusing proposed IPCC default values on burned area and average biomass resulted in a net emission 5 to 10 times higher than the measured emission values. It was found that the main reason for this discrepancy was not the emission factorsused by the IPCC, but an exaggerated fuel load estimate.  相似文献   

8.
A global data set on the geographic distribution and seasonality of freshwater wetlands and rice paddies has been compiled, comprising information at a spatial resolution of 2.5° by latitude and 5° by longitude. Global coverage of these wetlands total 5.7×106 km2 and 1.3×106 km2, respectively. Natural wetlands have been grouped into six categories following common terminology, i.e. bog, fen, swamp, marsh, floodplain, and shallow lake. Net primary productivity (NPP) of natural wetlands is estimated to be in the range of 4–9×1015 g dry matter per year. Rice paddies have an NPP of about 1.4×1015 g y–1. Extrapolation of measured CH4 emissions in individual ecosystems lead to global methane emission estimates of 40–160 Teragram (1 Tg=1012 g) from natural wetlands and 60–140 Tg from rice paddies per year. The mean emission of 170–200 Tg may come in about equal proportions from natural wetlands and paddies. Major source regions are located in the subtropics between 20 and 30° N, the tropics between 0 and 10° S, and the temperate-boreal region between 50 and 70° N. Emissions are highly seasonal, maximizing during summer in both hemispheres. The wide range of possible CH4 emissions shows the large uncertainties associated with the extrapolation of measured flux rates to global scale. More investigations into ecophysiological principals of methane emissions is warranted to arrive at better source estimates.  相似文献   

9.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

10.
Anthropogenic emissions of methane (CH4) and nitrous oxide (N2O) from livestock agriculture (enteric fermentation, animal waste management systems, and pasture manure) and plant growing of the Russia (CH4 emissions from rice fields, direct and indirect N2O emissions from agricultural lands) are considered. In 2004, the total emissions of these greenhouse gases in the agricultural sector amounted to 1.4 × 105 thousand t CO2-equivalent, which corresponds to 45% of the 1990 level (3.1 × 105 thousand t CO2-equivalent). In 2004, the contribution of N2O to the total agricultural emissions was approximately twice (67.0%) that of CH4 (33.0%). Direct N2O emissions from agricultural soils (0.5 × 105 thousand t CO2-equivalent) and CH4 emissions from the internal fermentation of domestic animals (0.4 × 105 thousand t CO2-equivalent) are the most significant sources in the agricultural sector of the Russian Federation. In 2004, all these agricultural sources emitting methane and nitrous oxide contributed about 7% CO2-equivalent to the total emission of the anthropogenic greenhouse gases in Russia.  相似文献   

11.
Tropical deforestation and atmospheric carbon dioxide   总被引:4,自引:0,他引:4  
Recent estimates of the net release of carbon to the atmosphere from deforestation in the tropics have ranged between 0.4 and 2.5 × 1015 g yr–1. Two things have happened to require a revision of these estimates. First, refinements of the methods used to estimate the stocks of carbon in the vegetation of tropical forests have produced new estimates that are intermediate between the previous high and low estimates of carbon stocks. When these revised estimates were used here to calculate the emissions of carbon from deforestation, the new range was 1.0–2.0 × 1015 g C.Second, the previous range of estimates of flux was based on rates of deforestation in 1980. Myers' recent estimate of the rates of tropical deforestation in 1989 is about 90% higher than the rates just 10 years ago. When these recent rates were used to calculate the current net flux of carbon to the atmosphere, the range was between 1.6 and 2.7 × 1015 g C.Other uncertainties expanded this range, however, to 1.1–3.6 × 1015 g C yr–1. Three factors contributed about equally to the expanded range: rates of deforestation, the fate of deforested lands (permanent or temporary clearing), and carbon stocks of forests, including anthropogenic reductions of carbon stocks within forests (thinning or degradation).  相似文献   

12.
Short-rotation woody crops (SRWC) could potentially displace fossil fuels and thus mitigate CO2 buildup in the atmosphere. To determine how much fossil fuel SRWC might displace in the United States and what the associated fossil carbon savings might be, a series of assumptions must be made. These assumptions concern the net SRWC biomass yields per hectare (after losses); the amount of suitable land dedicated to SRWC production; wood conversion efficiencies to electricity or liquid fuels; the energy substitution properties of various fuels; and the amount of fossil fuel used in growing, harvesting, transporting, and converting SRWC biomass. Assuming the current climate, present production, and conversion technologies and considering a conservative estimate of the U.S. land base available for SRWC (14 × 106 ha), we calculate that SRWC energy could displace 33.2 to 73.1 × 106 Mg of fossil carbon releases, 3–6% of the current annual U.S. emissions. The carbon mitigation potential per unit of land is larger with the substitution of SRWC for coal-based electricity production than for the substitution of SRWC-derived ethanol for gasoline. Assuming current climate, predicted conversion technology advancements, an optimistic estimate of the U.S. land base available for SRWC (28 × 106 ha), and an optimistic average estimate of net SRWC yields (22.4 dry Mg/ha), we calculate that SRWC energy could displace 148 to 242 × 106 Mg of annual fossil fuel carbon releases. Under this scenario, the carbon mitigation potential of SRWC-based electricity production would be equivalent to about 4.4% of current global fossil fuel emissions and 20% of current U.S. fossil fuel emissions.Research sponsored by the Biofuels Systems Division, U.S. Department of Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. Environmental Sciences Division Publication number 3952.  相似文献   

13.
Atmospheric aerosol samples were collected in the Ivory Coast, primarily at Lamto (6°N, 5°W) between 1979 and 1981. The samples were analysed for total particulate carbon concentration and isotopic composition (13C/12C) by mass spectrometry. Observed concentrations were found high compared to values reported for temperate regions. Fine particulate carbon in the submicrometersize range accounted for 50 to 80% of the reported concentrations. At Lamto, both particulate carbon concentrations and isotopic ratios exhibit a large temporal variability which is shown to reflect the diversity of sources and their seasonal evolution. Natural emissions from the equatorial forest during the wet season, and biomass burning during the dry season, appear to be the major sources. The latter, though active during only a third of the year, is, on an annual basis, the most important source. Based on the data obtained at Lamto, an attempt has been made to estimate the flux of fine particulate carbon emitted from the tropical regions into the global troposphere. This flux, which is of the order of 20×1012 g C/yr, appears to be equivalent to the flux of fine particulate carbon emitted from industrial sources. These results suggest that the tropospheric burden of fine particulate carbon in lowlatitude regions is dominated by the long-range transport of carbonaceous aerosols originating from the Tropics.  相似文献   

14.
A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability to earlier work. The model versions have climate sensitivity of 2.8–3.3°C and predict atmospheric CO2 close to present observations. Six idealized total fossil fuel CO2 emissions scenarios are used to explore a range of 1,100–15,000 GtC total emissions and the effect of rate of emissions. Atmospheric CO2 approaches equilibrium in year 3000 at 420–5,660 ppmv, giving 1.5–12.5°C global warming. The ocean is a robust carbon sink of up to 6.5 GtC year−1. Under ‘business as usual’, the land becomes a carbon source around year 2100 which peaks at up to 2.5 GtC year−1. Soil carbon is lost globally, boreal vegetation generally increases, whilst under extreme forcing, dieback of some tropical and sub-tropical vegetation occurs. Average ocean surface pH drops by up to 1.15 units. A Greenland ice sheet melt threshold of 2.6°C local warming is only briefly exceeded if total emissions are limited to 1,100 GtC, whilst 15,000 GtC emissions cause complete Greenland melt by year 3000, contributing 7 m to sea level rise. Total sea-level rise, including thermal expansion, is 0.4–10 m in year 3000 and ongoing. The Atlantic meridional overturning circulation shuts down in two out of three model versions, but only under extreme emissions including exotic fossil fuel resources.  相似文献   

15.
Based on an estimated global fuel consumption of 2.57 × 1015g(C) y–1 and the assumption thatthe fossil fuel burned in Austria is globallyrepresentative, an upper limit of 0.021 (+150%, –50%)Tg y–1 for global CH3CN emission dueto fossil fuel burning was obtained from the relativeenhancement of the concentrations of toluene, benzene,and acetonitrile (methyl cyanide) during strong,short-term traffic pollution. This is less than 6% ofthe total global budget of CH3CN, which is dominatedby an emission rate of 0.8 Tg y–1 from biomassburning.  相似文献   

16.
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980?C2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50?C80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.  相似文献   

17.
Abstract

This article presents a set of multi-gas emission pathways for different CO2-equivalent concentration stabilization levels, i.e. 400, 450, 500 and 550 ppm CO2-equivalent, along with an analysis of their global and regional reduction implications and implied probability of achieving the EU climate target of 2°C. For achieving the 2°C target with a probability of more than 60%, greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if the 90% uncertainty range for climate sensitivity is believed to be 1.5–4.5°C. A stabilization at 450 ppm CO2-equivalent or below (400 ppm) requires global emissions to peak around 2015, followed by substantial overall reductions of as much as 25% (45% for 400 ppm) compared to 1990 levels in 2050. In 2020, Annex I emissions need to be approximately 15% (30%) below 1990 levels, and non-Annex I emissions also need to be reduced by 15–20% compared to their baseline emissions. A further delay in peaking of global emissions by 10 years doubles maximum reduction rates to about 5% per year, and very probably leads to high costs. In order to keep the option open of stabilizing at 400 and 450 ppm CO2-equivalent, the USA and major advanced non-Annex I countries will have to participate in the reductions within the next 10–15 years.  相似文献   

18.
Extensive ambient concentration and flux measurements have been performed in the heavily polluted region of Cubatão/Brazil. Substantial contribution of anthropogenic sources to the local reduced sulfur burden has been observed. As a result of this atmospheric sulfur burden average gas exchange between vegetated soils and the atmosphere shows net deposition. Based mainly on own field measurements a local budget for H2S, COS, and CS2 has been made up in order to calculate anthropogenic emissions. All major sources and sinks in the chosen atmospheric reservoir (24×20×1 km) have been taken into account. Due to the small reservoir size fluxes across its boundaries are dominant sources and sinks. The differences between outflux and influx therefore account for the unknown anthropogenic emissions which have been determined to be 80±10 (H2S), 66±15 (COS), and 29±6 Mmol year-1 (CS2). Other sources and sinks like natural emissions, chemical conversion, and dry deposition turned out to be of minor importance on a local scale. In fact, inside the investigated reservoir natural emissions were below 0.5% of anthropogenic emissions. Anthropogenic emissions of H2S, COS, and CS2 quantified in this work have been compared with global emission estimates for these compounds made by other authors. We conclude that global anthropogenic emissions of reduced sulfur compounds especially of COS and CS2 are currently under-estimated.  相似文献   

19.
In part two of this series of papers on the IMS model, we present the chemistry reaction mechanism usedand compare modelled CH4, CO, and O3 witha dataset of annual surface measurements. The modelled monthly and 24-hour mean tropospheric OH concentrationsrange between 5–22 × 105 moleculescm–3, indicating an annualaveraged OH concentration of about 10 × 105 moleculescm–3. This valueis close to the estimated 9.7 ± 0.6 × 105 moleculescm–3 calculated fromthe reaction of CH3CCl3 with OH radicals.Comparison with CH4 generally shows good agreementbetween model and measurements, except for the site at Barrow where modelledwetland emission in the summer could be a factor 3 too high.For CO, the pronounced seasonality shown in the measurements is generally reproduced by the model; however, the modelled concentrations are lower thanthe measurements. This discrepancy may due to lower the CO emission,especially from biomass burning,used in the model compared with other studies.For O3, good agreement between the model and measurements is seenat locations which are away from industrial regions. The maximum discrepancies between modelled results and measurementsat tropical and remote marine sites is about 5–10 ppbv,while the discrepancies canexceed 30 ppbv in the industrial regions.Comparisons in rural areas at European and American continental sites arehighly influenced by the local photochemicalproduction, which is difficult to model with a coarse global CTM.The very large variations of O3 at these locations vary from about15–25 ppbv in Januaryto 55–65 ppbv in July–August. The observed annual O3amplitude isabout 40 ppbv compared with about 20 ppbv in the model. An overall comparison of modelled O3 with measurements shows thatthe O3seasonal surface cycle is generally governed bythe relative importance of two key mechanisms that drivea springtime ozone maximum and asummertime ozone maximum.  相似文献   

20.
Ambient concentrations of organic carbon (OC), elemental carbon (EC) and water soluble inorganic ionic components (WSIC) of PM10 were studied at Giridih, Jharkhand, a sub-urban site near the Indo Gangatic Plain (IGP) of India during two consecutive winter seasons (November 2011–February 2012 and November 2012–February 2013). The abundance of carbonaceous and water soluble inorganic species of PM10 was recorded at the study site of Giridih. During winter 2011–12, the average concentrations of PM10, OC, EC and WSIC were 180.2?±?46.4; 37.2?±?6.2; 15.2?±?5.4 and 18.0?±?5.1 μg m?3, respectively. Similar concentrations of PM10, OC, EC and WSIC were also recorded during winter 2012–13. In the present case, a positive linear trend is observed between OC and EC at sampling site of Giridih indicates the coal burning, as well as dispersed coal powder and vehicular emissions may be the source of carbonaceous aerosols. The principal components analysis (PCA) also identifies the contribution of coal burning? +?soil dust, vehicular emissions?+?biomass burning and seconday aerosol to PM10 mass concentration at the study site. Backward trajectoy and potential source contributing function (PSCF) analysis indicated that the aerosols being transported to Giridih from upwind IGP (Punjab, Haryana, Uttar Pradesh and Bihar) and surrounding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号