首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
测震数采仪记录的钻孔应变   总被引:1,自引:1,他引:0  
A seismometer data acquisition unit has been used in the Changping seismic station to record the output of a strainmeter.The output of a strainmeter was sampled at a rate of 100/sec by seismometer acquisition from the original rate of 1 per minute.Plenty of high frequency sampled data was recorded.The minute value curve calculated from the seismometer acquisition are consistent with that of the original data sampled by the strain acquisition system.More complete waveforms were recorded with a higher sampling rate,and seismic phase parameters calculated by using higher sampling rate strain seismic waves are also in consistency with the results of its predecessors.Spectra of the strain seismic waves are compared with that of seismic waves recorded by a seismometer in the Shisanling seismic station,and their trends are almost the same.Besides,some lower frequency components still exist in strain seismic waves.  相似文献   

2.
Shear-wave splitting in Tangshan region is studied by using digital seismic data.Analyzing 3-component digital seismic data in Tangshan strong ground motion array,it is found that almost all earthquakes occurred during 1982 to 1984 have significant shear-wave splitting.The polarization directions of faster shear waves in 7 stations are near EW,which are consistent with the axis of maximum principal compressive stress obtained from earthquake fault mechanisms and geodetic surveys.The crack densities of the 7 stations are roughly estimated,0.019 for TS01,TS02 and TS15,0.015 for TS03,TS07 and TS18 and 0.024 for TS19,by using the average time delay of slow shear-wave at the 7 stations.  相似文献   

3.
Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth.  相似文献   

4.
Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams, this paper preliminarily contains the polarization directions of fast shear wave and the time-delays of split shear waves at every station, and analyzes the crustal anisotropic characteristics in the source region. In the study area, the polarization direc- tions at stations BAX, TQU, L 132, L 133, L 134, and L 135 are northeast, which is consistent with the strike of Dachuan- Shuangshi fault. There are two polarization directions at MDS and L131, which are northeast and southeast. The scatter of polarization directions suggests the complex stress field around these two stations where two faults intersect. For the normalized time-delays at every station, the range is 1.02-8.64 ms/km. The largest time-delay is from L134 which is closest to the mainshock, and the smallest one is from L133. The variations in time-delays show the decreasing at stations BAX, L134, and L135 because of the stress-relaxation after earthquake.  相似文献   

5.
After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows: firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.  相似文献   

6.
Based on 49 digital seismograms recorded by 73 seismic stations in the Jiangsu Telemetered Seismic Network,the paper uses Atkinson's method to calculate the inelastic attenuation coefficient of the Jiangsu area. We find that the frequency-dependent Q in the Jiangsu region is Q( f) = 272. 1·f~(0. 5575). We also use Moya's method to invert the 63 stations' site responses. The results show that the site responses of the 25 stations in Jiangsu are approximately 1 at a range between 1Hz and 20 Hz, which is consistent with their basements on rocks. The response curves of the site responses of the 14 underground stations are similar to each other. Their site responses show an amplification at low frequencies and minimization at high frequencies. The calculation of the Brune model on the waveform data of M_L≥2. 5 earthquakes from Jiangsu Digital Seismic Network between October 2010 and May 2015 in terms of seismic source parameters of 58 seismic waves shows that there are good correlations between seismic magnitude and other source parameters such as seismic moment, source radius and corner frequency, while the correlations between seismic magnitude and stress drop,and stress drop and source radius are not so good.  相似文献   

7.
In order to search for the seismic wave characteristics of low frequency signals in the Alxa Left Banner region,Inner Mongolia,the low frequency signals of seismic wave data are extracted from the earthquakes of MS5. 8 in 2015 and MS5. 0 in 2016 in this area. The results show that:① Before the MS5. 8 earthquake,the seismic stations located near the epicenter in Wuhai,Dongshengmiao,and Shizuishan recorded seismic waves that showed the phenomenon of spectrum shift from high to low frequency.② The low frequency signals recorded by different stations have obvious difference.③ According to the data recorded by the station closest to the epicenter,low-frequency signals were recorded about120 hours before the earthquake and had obvious anomalies. This may reflect slow slip before the earthquake.  相似文献   

8.
1,209 earthquakes occurred in Xianyou, Fujian from August 4, 2010 to October 4, 2013. The largest earthquake was ML5.0 on September 4, 2013. In order to study the Xianyou earthquake sequence and understand the causative structure and stress field of Xianyou, the focal mechanism solutions of six earthquakes ( ML 〉 3. 5 ) in the Xianyou earthquake sequence are calculated using the broadband digital data of the Fujian Seismic Network with the seismic moment tensor inverse method. The results show that the focal faults of the six earthquakes are similar, which are all strike-slip faults striking to the northwest with high dip angles. The direction of the principal compressive stress axes is near SN, which is different from the stress field of Fujian region. The Xianyou earthquake sequence may have been induced by the stress adjustment after the impoundment of Jinzhong reservoir.  相似文献   

9.
Pattern recognition of seismic and morphostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have this potential. They are identified by morphostructural analysis. In this study, the Alborz region has considered as studied case and locations of future events are forecast based on Kohonen Self-Organized Neural Network. It has been shown how it can predict the location of earthquake,and identifies seismogenic nodes which are prone to earthquake of M5.5? at the West of Alborz in Iran by using International Institute Earthquake Engineering and Seismology earthquake catalogs data. First, the main faults and tectonic lineaments have been identified based on MZ(land zoning method) method. After that, by using pattern recognition, we generalized past recorded events to future in order to show the region of probable future earthquakes.In other word, hazardous nodes have determined among all nodes by new catalog generated Self-organizing feature maps(SOFM). Our input data are extracted from catalog,consists longitude and latitude of past event between1980–2015 with magnitude larger or equal to 4.5. It has concluded node D1 is candidate for big earthquakes in comparison with other nodes and other nodes are in lower levels of this potential.  相似文献   

10.
A new 3D velocity model of the crust and upper mantle in the southeastern(SE) margin of the Tibetan plateau was obtained by joint inversion of body-and surface-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the v S model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the twolocated to the northeast of 2013 M S7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes(M≥5) in the region occurring from2008 to 2015 are located around the high-velocity zones,indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau.  相似文献   

11.
Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.  相似文献   

12.
In view of the correlation between tectonic activity and seismicity, the strong earthquake risk in the North-South Seismic Belt aroused wide concern after the 2014 Yutian Ms7. 3 earthquake. Using the seismic catalog of the China Earthquake Networks Center, the Benioff strain ratio in the North-South Seismic Belt is calculated in 30 days before and after the March 21, 2008 and February 12, 2014 Yutian Ms7. 3 earthquakes. Results show that in a year after the 2008 Yutian Ms7. 3 earthquake, M 〉 5. 0 earthquakes all occurred near the high strain ratio area or the junction between the low and high strain ratio areas, the activity of strong earthquakes obviously coincides with the high strain ratio area, which indicates that these areas have a higher stress level. The Yutian earthquakes promoted the release of small earthquakes in the high stress areas. This research is of certain indicating significance to the study of subsequent strong earthquakes of this region.  相似文献   

13.
This paper provides an overview of the ideas and methods of the assessment of seismic intensity based on remote sensing and describes the models used to assess the remote sensing based synthetic seismic damage index and seismic intensity. With the data of damage information extracted from the high-resolution aerial images in the earthquake-stricken areas (Jiegu town, Yushu city, Qinghai) of the 2010 Ms7. 1 Yushu earthquake, and the data obtained through post-earthquake field investigation, the seismic damage degree and seismic intensity have been estimated. The analysis of the results shows that the seismic intensity in Yushu city is estimated as IX through the RS assessment method, which is consistent with the result estimated according to the ground surveys. The results are discussed in the last part of the paper and indicate that the RS techniques are expected to be one of the main methods used to estimate the seismic intensity values in the emergency stage.  相似文献   

14.
Chin Array is a dense portable broadband seismic network to cover the entire continental China, and the Phase I is deployed along the north-south seismic belt in southwest China. In this study, we analyze seismic data recorded on the Chin Array following the February 15,2013 Chelyabinsk(Russia) meteor. This was the largest known object entering the Earth's atmosphere since the1908 Tunguska meteor. The seismic energy radiated from this event was recorded by seismic stations worldwide including the dense Chin Array that are more than 4000 km away. The weak signal from the meteor event was contaminated by a magnitude 5.8 Tonga earthquake occurred *20 min earlier. To test the feasibility of detecting the weak seismic signals from the meteor event, we compute vespagram and perform F-K analysis to the surface-wave data. We identify a seismic phase with back azimuth(BAZ) of 329.7° and slowness of 34.73 s/deg, corresponding to the surface wave from the Russian meteor event(BAZ *325.97°). The surface magnitude(MS) of the meteor event is 3.94 ± 0.18. We also perform similar analysis on the data from the broadband array F-net in Japan, and find the BAZ of the surface waves to be316.61°. With the different BAZs of Chin Array and F-net,we locate the Russian meteor event at 58.80°N, 58.72°E.The relatively large mislocation(*438 km as compared with 55.15°N, 61.41°E by others) may be a result of thebending propagation path of surface waves, which deviates from the great circle path. Our results suggest that the dense Chin Array and its subarrays could be used to detect weak signals at teleseismic distances.  相似文献   

15.
Seismic isolation effect of lined circular tunnels with damping treatments   总被引:3,自引:0,他引:3  
The Havriliak-Negami model for dynamic viscoelastic material behavior and Biot's theory of poroelasticity are employed to develop an exact solution for three-dimensional scattering effect of harmonic plane P-SV waves from a circular cavity lined with a multilayered fluid-filled shell of infinite length containing viscoelastic damping materials and embedded within a fluid-saturated permeable surrounding soil medium. The analytical results are illustrated with numerical examples where the effects of liner/coating structural arrangement, viscoelastic material properties, liner-soil interface bonding condition, seismic excitation frequency, and angle of incidence on the induced dynamic stress concentrations are evaluated and discussed to obtain representative values of the parameters that characterize the system. It is demonstrated that incorporating viscoelastic damping materials with a low shear modulus in the constrained layer configuration is an efficient means of enhancing the overall seismic isolation performance, especially for near-normally incident seismic shear waves where the amplitudes of induced dynamic stresses may be reduced by up to one-third of those without isolation in a relatively wide frequency range. Some additional cases are considered and good agreements with solutions available in the literature are obtained.  相似文献   

16.
On 25 April 2015,an M_w 7.8 earthquake occurred on the Main Himalaya Thrust fault with a dip angle of~7° about77 km northwest of Kathmandu,Nepal.This Nepal Gorkha event is the largest one on the Himalayan thrust belt since 1950.Here we use the compressive sensing method in the frequency domain to track the seismic radiation and rupture process of this event using teleseismic P waves recorded by array stations in North America.We also compute the distribution of static shear stress changes on the fault plane from a coseismic slip model.Our results indicate a dominant east-southeastward unilateral rupture process from the epicenter with an average rupture speed of ~3 km s~(-1).Coseismic radiation of this earthquake shows clear frequency-dependent features.The lower frequency(0.05-0.3 Hz) radiation mainly originates from large coseismic slip regions with negative coseismic shear stress changes.In comparison,higher frequency(0.3-0.6 Hz) radiation appears to be from the down-dip part around the margin of large slip areas,which has been loaded and presents positive coseismic shear stress changes.We propose an asperity model to interpret this Nepal earthquake sequence and compare the frequency-dependent coseismic radiation with that in subduction zones.Such frequency-dependent radiation indicates the depth-varying frictional properties on the plate interface of the Nepal section in the main Himalaya thrust system,similar to previous findings in oceanic subduction zones.Our findings provide further evidence of the spatial correlation between changes of static stress status on the fault plane and the observed frequency-dependent coseismic radiation during large earthquakes.Our results show that the frequency-dependent coseismic radiation is not only found for megathrust earthquakes in the oceanic subduction environment,but also holds true for thrust events in the continental collision zone.  相似文献   

17.
Since the Earth outer core is liquid, the shear waves that are generated by a large earthquake and traveling to the core (ScS) will totally reflect with strong seismic energy.  相似文献   

18.
The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis methods, and the complexity characteristics of crest-mantle boundary beneath the studied area and its adjacent region were determined. The results show that the place below epicenter can be taken as boundary, the northern side of which is Inner Mongolia axis with small complexity coefficient and the southern side of which is Huai'an basin with large complexity coefficient. The different spectrum patterns at the two sides of the epicenter were inferred from spectrum analysis. In the epicentral area, there have been multi-period magmatic eruptions since Meso-Cenozoic and craters exist at the surface. From the velocity imaging of middle and upper crust in Zhangbei seismic region it can be found that there are crustal low velocity bodies around the craters and also there are low velocity zones, which went into deep crust. It is suggested that the distinct zones of crust-mantle boundary complexity may be the margin, where the magma had intruded due to magma activity in Meso-Cenozoic. The southern side with large complexity coefficient is deep magmatic activity area and the northern side with small complexity coefficient is stable crust-mantle tectonics. The difference of crust-mantle complexity provides deep background for the development of strong earthquake.  相似文献   

19.
Detecting temporal changes in fault zone properties at seismogenic depth have been a long-sought goal in the seismological community for many decades.Recent studies based on waveform analysis of repeating earthquakes have found clear temporal changes in the shallow crust and around active fault zones associated with the occurrences of large nearby and teleseismic earthquakes.However,repeating earthquakes only occur in certain locations and their occurrence times cannot be controlled,which may result in inadequate sampling of the interested regions or time periods.Recent developments in passive imaging via auto-and cross-correlation of ambient seismic wavefields (e.g.,seismic noise,earthquake coda waves) provide an ideal source for continuous monitoring of temporal changes around active fault zones.Here we conduct a systematic search of temporal changes along the Parkfield section of the San Andreas fault by cross-correlating relatively high-frequency (0.4-1.3 Hz) ambient noise signals recorded by 10 borehole stations in the High Resolution Seismic Network.After using stretch/compressed method to measure the delay time and the decorrelation-index between the daily noise cross-correlation functions (NCCFs),we find clear temporal changes in the median seismic velocity and decorrelation-index associated with the 2004 M6.0 Parkfield earthquake.We also apply the same procedure to the seismic data around five regional/teleseismic events that have triggered non-volcanic tremor in the same region,but failed to find any clear temporal changes in the daily NCCFs.The fact that our current technique can detect temporal changes from the nearby but not regional and teleseismic events,suggests that temporal changes associated with distance sources are very subtle or localized so that they could not be detected within the resolution of the current technique (~0.2%).  相似文献   

20.
The coseismic Coulomb stress change caused by fault interaction and its influences on the triggering and delaying of earthquake are briefly discussed.The Xianshuihe fault belt consists of Luhuo,Daofu,Kangding,Qianning and Ganzi fault.Luohuo(Ms=7.6,1973)-Kangding(Ms=6.2,1975)-Daofu(Ms=6.9,1981)-Ms=6.0,1982)earthquake is a seismic sequence continuous on the time axis with magnitude greater than6.0.They occurred on the Luhuo.Kangding,Daofu and Ganzi fault,respectively.The coseismic Coulomb stress changes caused by each earthquake on its surrounding major faults and microcracks are calculated,and their effects on the triggering and delaying of the next earthquake and aftershocks are analyzed.It is shown that each earthquake of the sequence occurred on the fault segment with coseismic Coulomb stress increases caused by its predecessors,and most after-shocks are distributed along the microcracks with relatively larger coseismic Coulomb stress increases resulted from the main shock.With the fault interaction considered,the seismic potential of each segment along Xianshuihe fault belt is reassessed,and contrasted with those predicted results ignoring coseismic Coulomb stress change,the significance of fault interaction and its effect on triggering and delaying of earthquake are emphasized.It is con-cluded that fault interaction plays a very important role on seismic potential of Xianshuihe fault belt,and the maximal change of future earthquake probability on fault segment is up to 30.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号