首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Utilizing a hull-mounted, multinarrow beam echosounder onboard RV Polarstern, we measured variation of acoustic backscatter with incidence angles at two different sites in the Southern Oceans (Agulhas Plateau and the Riiser Larsen Sea). We modeled the data, using a composite roughness model, including water-sediment interface roughness and sediment volume roughness parameters. The model effectively uses the near normal incidence angle backscatter to determine the seafloor interface roughness parameters employing Helmholtz-Kirchhoff theory. Beyond 20° incidence angles, an application of Rayleigh-Rice theory is made by using a necessary splicing technique (combining both of the theories at 20° incidence angle). The estimated interface and volume roughness parameters are found to be in accordance with the known area geology.  相似文献   

2.
Application of quantitative angular backscatter modelling to manganese nodule-bearing areas of the Central Indian Ocean Basin (CIOB) has been initiated at NIO during the year 1998. Studies were aimed to establish the suitability of seafloor backscattering in delineating seafloor parameters characteristic of nodule-rich sediments. In this paper, processed Hydrosweep multi-beam backscatter data from 45 spot locations in the CIOB (where nodule samples are available) were analysed to estimate seafloor and sediment volume roughness parameters. The application of a composite roughness model to a nodule-bearing region (6,600 km2) of the CIOB, to determine seafloor interface roughness parameters from a multi-beam backscatter dataset, shows only four power law sets. The results attest 80% of the nodule-bearing seafloor to be smooth in terms of interface roughness parameters at micro-topographic level. The sediment volume roughness parameters are dominant only in 29% of the smooth interface roughness sites. This indicates that 51% of the seafloor area possesses negligible (interface and volume) roughness. A critical analysis using pseudo-side-scan records from 12 selected locations in the study area affirms the combined importance of the seafloor interface and sediment volume roughness parameters for precise determination of manganese nodule abundance.  相似文献   

3.
The calibration of multibeam echosounders for backscatter measurements can be conducted efficiently and accurately using data from surveys over a reference natural area, implying appropriate measurements of the local absolute values of backscatter. Such a shallow area (20-m mean depth) has been defined and qualified in the Bay of Brest (France), and chosen as a reference area for multibeam systems operating at 200 and 300 kHz. The absolute reflectivity over the area was measured using a calibrated single-beam fishery echosounder (Simrad EK60) tilted at incidence angles varying between 0° and 60° with a step of 3°. This reference backscatter level is then compared to the average backscatter values obtained by a multibeam echosounder (here a Kongsberg EM 2040-D) at a close frequency and measured as a function of angle; the difference gives the angular bias applicable to the multibeam system for recorded level calibration. The method is validated by checking the single- and multibeam data obtained on other areas with sediment types different from the reference area.  相似文献   

4.
Echo-peak data of outer and normal incidence beams from five different Southern Ocean bottom topographic regions have been analysed. The Rice and Extremal probability density function (PDF) statistical approaches reveal that the seabed roughness is, in general, Gaussian in nature except in the case of the Kainan Maru seamount summit (area D). The outer beams of the Enderby abyssal plain (area C) echo-peak PDF statistics reveal the highest possible large-scale feature dominance. Interestingly, Extremal PDF fit parameters (!) from the Agulhas Basin (area A) show a less dominant large-scale roughness than in the case of area C. Large-scale feature dominance up to 15° beam angle is observed in the case of mixed roughness seabeds such as area B (southwest Indian ridge) and area E (Meteor Rise). No increase in the 30°-beam Extremal PDF parameters is observed in these areas. Maximum microtopographic roughness is documented in area D on the summit of Kainan Maru seamount. The estimated fit parameters using Extremal statistics of outer-beam peak data provide a better understanding of the scattering process. Previously determined power law and volume roughness parameters using composite roughness theory are given for the five different areas. These support the results obtained using Rice and Extremal PDFs. The existence of higher volume roughness parameters and power law parameters for medium-scale roughness, along with dominant microtopographic features, are evident from the results of this study.  相似文献   

5.
For Pt. I see ibid. vol. 26, pp. 181-200 (2001). This paper describes the results of experimental investigations into the microwave backscatter from mechanically generated transient breaking waves. The investigations were carried out in a 110 m×7.6 m×4 m deep model basin, utilizing chirped wave packets spanning 0.75-1.75 Hz. Backscatter measurements were taken by a K-band continuous wave radar (24.125 GHz) at 40° angle of incidence, and at azimuth angles of 0°, 45°, 90°, 135° and 180° relative to the direction of wave propagation. Grazing measurements were conducted using an X-band (10.525 GHz) FMCW radar at 85° angle of incidence, and azimuth angles of 0° and 180°. Results show that the maximum radar backscatter was obtained in the upwave direction prior to wave breaking and was caused by the specular or near specular presentation of the wave to the radar. After breaking, the backscatter transitioned from a specular or near-specular dominated scattering, primarily seen in the upwave direction, to a small scale roughness dominated scattering, observed at all azimuths. Physical optics solutions were found to correctly predict the backscatter for the specular or near-specular dominated scattering and the small perturbation method was found to accurately model the VV polarization post-break radar backscatter  相似文献   

6.
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking. An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor. In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships. The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for robust seafloor characterization.  相似文献   

7.
Acoustic backscattering from a sandy seabed was measured at a frequency of 5.5 kHz at a wide range of grazing angles. The measurement system used was the University of Miami's sonar tower, consisting of an omni-directional broadband source and two 16-channel hydrophone receiver arrays. A volume scattering model, which combines a fluid model with reflection/transmission coefficients derived from the Biot theory, is used. This model allows energy penetration into the bottom, calculations of the volume scattering at all grazing angles, and the frequency dependence of the sound speed in the water-saturated sediment. In the model, rather than assume sound-speed correlation length in sedimentary volume, core data were used to assimilate a 3-D fluctuation spectrum of the density. The numerical results showed excellent agreement with the measurement at lower grazing angles. We concluded that the interface roughness scattering was dominant at lower grazing angles, while the volume scattering is dominant at higher grazing angles at the sandy site. The border of the dominance of the interface and volume scattering was the so-called critical angle at this frequency. The frequency dependence of sound speeds is also discussed.  相似文献   

8.
In this paper, the lowest order small-slope approximation (SSA) scattering cross section for Biot theory is derived. Numerical results are obtained for both backscattering and bistatic scattering using a modified power law spectrum, and these results are compared with those of lowest order perturbation theory (PT). Frequencies ranging from 100 Hz to 3 kHz are used for surfaces with RMS heights h of 0.1 and 1 m and a correlation length l of 10 m. The angle of incidence for the bistatic results is limited to 45/spl deg/. It is found that for the smaller surface height roughness (h = 0.1 m), the SSA and PT give the same results for frequencies up to almost 1 kHz for both backscattering and bistatic scattering. For h = 1 m, the SSA and PT backscatter results are in good agreement at all frequencies for incident grazing angles up to approximately 45/spl deg/. For the bistatic results, the SSA and PT results agree only at low grazing angles of scatter. In the specular region, the results differ significantly.  相似文献   

9.
This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1–15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1–2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.  相似文献   

10.
相比于实孔径微波辐射计,一维综合孔径微波辐射计具有高空间分辨率和多入射角观测特点.本文提出采用观测频率为6.9,10.65,18.7,23.8和36.5 GHz,且入射角范围为0°~65°的一维综合孔径微波辐射计遥感大气海洋环境要素.基于构建的微波大气海洋辐射传输正演模型,分析了辐射计亮温对大气海洋环境要素的敏感性,为...  相似文献   

11.
基于北京遥测技术研究所机载波谱仪实测数据以及ECMWF提供的风场数据,分析了不同风速条件下小入射角海浪平均后向散射系数不对称性与各向异性随入射角的变化特性,并对导致这一现象的原因进行了初步分析。结果表明:小入射角下,海浪平均后向散射系数随入射角增大呈现递减趋势并在18°时达到某一稳定值,之后基本维持不变;海浪后向散射系数不对称性与各向异性均随入射角增大呈现递增趋势,同样在18°增大至某一稳定值,之后基本维持不变;低风速条件下,海浪不对称性和各向异性与风速有关,且风速越大不对称性与各向异性越明显。  相似文献   

12.
A finite-difference time-domain (FDTD) method for scattering by one-dimensional, rough fluid-fluid interfaces is presented, modifications to the traditional FDTD algorithm are implemented which yield greater accuracy at lower computational cost. These modifications include use of a conformal technique, in which the grid conforms locally to the interface, and a correction for the numerical dispersion inherent to the FDTD algorithm, Numerical results are presented for fluid-fluid cases modeling water-sediment interfaces. Two different roughness spectra, the single-scale Gaussian roughness spectrum and a multiscale modified power-law spectrum, are used. The Gaussian results are calculated as a function of the dimensionless parameters kh and kl, where k is the wavenumber in water, h is the rms surface height, and l is the surface correlation length. For the modified power-law spectrum, statistical parameters consistent with an insonification frequency of 7.5 kHz are used. Results are compared with those obtained using an integral equation technique both for scattering from single-surface realizations and for Monte Carlo averages of scattering from an ensemble of surface realizations. Scattering strengths are calculated as a function of scattering angle for an incident angle of 70° (20° grazing). The results agree well over all scattering angles for the cases examined  相似文献   

13.
The EM12 multibeam echosounder can record acoustic backscatter information as well as high resolution bathymetry. The dataset presented, from the axis of the Mid-Atlantic Ridge at 45° N, was the first EM12 survey of a mid-ocean ridge. This paper presents methods for utilising the backscatter information. Data processing enables the production of a mosaic of acoustic backscatter, and visualisation techniques are investigated to provide initial qualitative views of the combined backscatter and bathymetry datasets. The co-registration of the backscatter and bathymetry data enables quantitative analysis of their relationships. Various sites of different geological type have been selected and their angular acoustic backscattering relationships estimated, including the effect on backscatter of incidence angle, its regional variability with bottom type and the influence of bottom slope. Incidence angles and bottom type are shown to affect backscatter to a similar degree, while slopes appear to contribute little. The geometry of hull-mounted systems, such as the EM12, is significantly different from that of conventional sidescan sonars, such as GLORIA, and the backscatter images from the two types differ in various respects. Because of the wide variations in incidence angle that are common with hull-mounted systems, and the importance of incidence angle in determining backscatter strength, it is vital to consider the effect of incidence angle during interpretation.  相似文献   

14.
Backscattering from bioturbated sediments at very high frequency   总被引:1,自引:0,他引:1  
Recent backscattering measurements made in the Gulf of La Spezia, Italy, using a sonar operating at 140 kHz combined with thorough characterization of seabed interface and volume properties illustrate the importance of seabed volume scattering. Three-dimensional fluctuation statistics of density variability and vertical density gradients, both of which are attributed to the level of bioturbation (e.g., sea shell fragments, burrows, pockets of water) have been quantified using X-Ray computed tomography. Two-dimensional interface roughness spectra have also been determined using a digital stereo photogrammetry system. The combined ground truth has allowed a backscattering model to be fully constrained. Measured backscattering strength versus angle is compared to a model that includes the effects of varying density and sound speed. Data-model comparisons show that scattering from the volume of strongly inhomogeneous sediments can often be a primary contributor to seafloor scattering away from normal incidence.  相似文献   

15.
徐韦  程和琴  黄知  郑树伟  陈钢 《海洋学报》2019,41(1):172-182
近海海底地形探测与沉积物精确分类对涉海工程建设、生物栖息地反演以及海底资源勘查与开发具有重要的现实意义。以澳洲Joseph Bonaparte湾为例,利用多波束测深技术获取了该海湾约880 km2水域的水深数据与背向散射强度信号,结合同步采集的54个海底表层沉积物样品,通过随机决策树模型对该海域海底表层沉积物进行了分类研究。结果表明:(1)利用随机决策树模型分析该海域沉积物类型与背向散射强度的关系时,当模型内部参数设置:树的总数为200,最小分裂节点为2,每棵树的最大分裂级数为5时,可提高预测准确率;(2)该参数设置下,利用13°和37°入射角的背向散射强度预测该海域沉积物类型时,准确率最高,其值为83.3%,且在研究海域,砂质砾和砾质砂分布在背向散射强度较强的深槽或海沟等地区,而砾质泥质砂和含砾泥质砂主要分布在背向散射强度较弱的浅水海域。分析还发现,当水深数据作为预测海底表层沉积物类型的特征变量时,有可能降低最终预测结果的准确率。  相似文献   

16.
A physical radar cross-section model for a wind-driven sea with swell   总被引:6,自引:0,他引:6  
A new spectrum model for the ocean surface is proposed. We determine the two unknown parameters in this spectrum by fitting it to radar observations. We find that this spectrum combined with two-scale scattering theory can predict much of the observed dependence of the radar cross section on radar frequency, polarization, angle of incidence, and wind velocity at incidence angles in the0deg-70degrange. The spectrum model is combined with a model for swell to examine the effect of swell on the radar cross section. We find that the effect of swell is significant for low radar frequencies (Lband) and near normal incidence but can be nearly eliminated by using higher frequencies (K_{u}band) and large angles of incidence (approx 50deg).  相似文献   

17.
The effect of variations in ocean surface roughness characteristics with upwind/downwind direction, reported by other investigators, is used to compute radar cross section (sigmadeg) and to assess the errors which may arise in present and planned altimeter sensors. Based on an analysis of the rough surface impulse response, the uncertainty between attitude angle andsigmadegasymmetry is found to cause height errors as large as 12 cm, depending on off-nadir angles and sea state. Additionally, the previously reported data in conjunction with computed facet backscatter are found to producesigmadegcharacteristics at large off-nadir angles which are in better agreement with experimental results than those predicted by physical optics Gaussian theory.  相似文献   

18.
作者对不同内倾角海螺笼对脉红螺(Rapana venosa)的诱捕效果进行了实验研究。在实验室水槽中,观察了4种不同内倾角(35°、45°、55°和65°)的海螺笼对脉红螺的诱捕效果,同时还研究了光照和温度对海螺笼诱捕效果的影响,为优化海螺笼捕捞技术提供理论依据。实验结果表明:在相同的实验条件下,不同的内倾角对海螺笼诱捕效果影响十分显著(P<0.01),其中内倾角为45°的海螺笼诱捕效果最好,内倾角为35°和55°的海螺笼较好,而内倾角为65°的海螺笼诱捕效果则最差。同时发现,内倾角对脉红螺的个体大小具有选择性,随着内倾角的增大,壳高<7cm的个体占相应笼诱捕总数的百分比越来越小。光照对海螺笼的捕捞效果有十分显著的影响,而温度的影响则不明显。  相似文献   

19.
Abstract

Various modified direct shear tests on the interface between calcareous sand and steel with different degrees of roughness were conducted in this article, and the different interface property results between calcareous sand-steel and siliceous sand-steel were compared. It was found that: (1) Under various normal stresses, the limit shear stress at the interface reaches the peak value when the groove depth is at the critical value Rcr. Further, when the flat width is at a critical value Gcr, the limit interface shear stress reaches to that of a grooved surface with a flat width of zero. (2) The magnitudes of Rcr and Gcr are related to the gradation and grain size of sand. For the calcareous sand tested, Rcr and Gcr are three times and seven times the mean grain size, respectively. (3) When the intersection angle between the symmetrical V-shaped grooves and the direct shear direction equals to 45°, the limit interface shear stress reaches the peak value and no significant increase is observed at the larger intersection angle. (4) Under the same interface testing conditions with siliceous and calcareous sands, the interface friction angle of the calcareous sand is ~5°–6° greater than that of siliceous sand.  相似文献   

20.
This paper describes the results of an experimental investigation of the microwave backscatter from several laboratory generated transient breaking waves. The breaking waves were generated mechanically in a 35 m×0.7 m×1.14 m deep wave tank, utilizing chirped wave packets spanning the frequency range 0.8-2.0 Hz. Backscatter measurements, were taken by a X/K-band (10.525 GHz, 24.125 GHz) continuous wave Doppler radar at 30°, 45°, and 60° angles of incidence, and at azimuth angles of 0° and 180° relative to the direction of wave propagation. Surface profiles were measured with a high-speed video camera and laser sheet technique. Specular facets were detected by imaging the surface from the perspective of the radar. The maximum radar backscatter occurred in the upwave direction prior to wave breaking, was nearly polarization independent and corresponded to the detection of specular facets on the steepened wave face. This peak radar backscatter was predicted through a finite conductivity corrected physical optics technique over the measured surface wave profiles. Post break backscatter was predicted using a roughness corrected physical optics technique and the small perturbation method, which was found to predict the returns for vertical polarization, but to under predict the horizontal returns  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号