首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Benthic macroalgae form an important part of temperate marine ecosystems, exhibiting a complex three-dimensional character which represents a vital foraging and spawning ground for many juvenile fish species. In this research, image-based techniques for classification of multibeam backscatter are explored for the detection of benthic macroalgae at Cashes Ledge in the Gulf of Maine, USA. Two classifications were performed using QTC-Multiview, differentiated by application of a threshold filter, and macroalgal signatures were independently extracted from the raw sonar datagrams in Matlab. All classifications were validated by comparison with video ground-truth data. The unfiltered classification shows a high degree of complexity in the shallowest areas within the study site; the filtered demonstrates markedly less variation by depth. The unfiltered classification shows a positive agreement with the video ground-truth data; 82.6% of observations recording Laminaria sp., 39.1% of Agarum cribrosum and 100.0% (n = 3) of mixed macroalgae occur within the same acoustically distinct group of classes. These are discrete from the 8.1% recorded agreement with absences and nulls (>40 m) of macrophytes (n = 32) from a total of 86 ground-truth locations. The results of the water column data extraction (WCDE) show similar success, accurately predicting 78.3% of Laminaria sp. and 30.4% of A. cribrosum observations.  相似文献   

2.
Comparing single beam and multibeam echo sounder data where surveys overlap we find that: 95% of multibeam measurements are repeatable to within 0.47% of depth; older single beam data can be at least as accurate as multibeam; single beam and multibeam profiles show excellent agreement at full-wavelengths longer than 4 km; archival sounding errors are not Gaussian; 95% of archival soundings in the northwest Atlantic are accurate to within 1.6% of depth; the 95th percentile error is about five times greater in pre-1969 data than in post-1968 data; many of the largest errors are located over large seafloor slopes, where small navigation errors can lead to large depth errors. Our uncertainty model has the form σ 2 = a 2 + (bz)2 + (cs)2, where 2σ is approximately the 95th percentile error, z is the depth, s is the slope, and a, b, c are constants we determine separately for pre-1969 and post-1968 data.  相似文献   

3.
The calibration of multibeam echosounders for backscatter measurements can be conducted efficiently and accurately using data from surveys over a reference natural area, implying appropriate measurements of the local absolute values of backscatter. Such a shallow area (20-m mean depth) has been defined and qualified in the Bay of Brest (France), and chosen as a reference area for multibeam systems operating at 200 and 300 kHz. The absolute reflectivity over the area was measured using a calibrated single-beam fishery echosounder (Simrad EK60) tilted at incidence angles varying between 0° and 60° with a step of 3°. This reference backscatter level is then compared to the average backscatter values obtained by a multibeam echosounder (here a Kongsberg EM 2040-D) at a close frequency and measured as a function of angle; the difference gives the angular bias applicable to the multibeam system for recorded level calibration. The method is validated by checking the single- and multibeam data obtained on other areas with sediment types different from the reference area.  相似文献   

4.
交叉检查在多波束测深精度评估和误差分析中的应用   总被引:1,自引:0,他引:1  
为了保证多波束成果质量,需要对测深数据进行精度评估和误差分析。交叉检查是有效的多波束水深精度评估方法,文章在传统的基于面的交叉检查中,采用了置信度为95%的均方根差作为多波束交叉点水深不符值的精度指标,并进一步提出了基于P ing的交叉检查方法对精度超限的数据进行误差分析。通过实例分析表明:置信度为95%的均方根差作为精度指标较为可靠;基于P ing的交叉检查方法能够辨别多波束水深数据中常见的几种不同类型误差。  相似文献   

5.
多波束声呐图像是进行海底底质分类的主要数据源之一,由于受海洋噪声、声波散射和混响、仪器设备等因素影响,其经各项常规改正后仍存在明显残差,突出表现在中央波束区和条带重叠区,难以形成高质量的声呐图像。文中分析了多波束声呐图像残差的成因及影响,提出了一种基于多条带最小二乘拟合的多波束声呐图像残差处理方法。首先,得到相邻声脉冲(ping)信号中央区域、重叠区域以及整体趋势的拟合函数;然后,通过拟合函数计算得到中央和重叠区域的残差改正系数;最后,通过改正系数进行残差改正。实验分析表明,该方法在保留原始细节的基础上,有效削弱了残差对声呐图像的影响,对多波束声呐图像处理具有参考和应用价值。  相似文献   

6.
The NOAA National Ocean Service hydrographic surveys run between 1930 and 1965 have been digitized from the paper smooth sheets. The surveys since 1965 have been collected, processed, and stored in digital form. The new multibeam systems have been used since 1984 to cover over 100,000 square nautical miles of the Exclusive Economic Zone with overlapping swaths of digital soundings. Each of these multibeam surveys may contain millions of soundings. None of the above data has been assigned quality control tags by NOS, but they are stored by survey number, with indexes showing what younger data are available to supersede older data in any area.

Large digital databases, such as the Master Seaftoor Digital Database, are planned in connection with the Defense Hydrographic Initiative. It will be necessary to assign quality control ratings to the soundings in the databases. The detailed survey data may be indexed in the master database but maintained in distributed databases. The databases could supply historical sounding data in digital form for the planning, collection, processing, and evaluation of new survey data.

During the compilation of some bathymetric maps and nautical charts, it is necessary to junction and combine the newer multibeam surveys having total bottom coverage, with the more widely spaced historical data. Precedence is given to the newer hydrographic data, with some older data being removed as needed in order to provide a smooth transition between data sets. In applying multibeam data to nautical charts, it is necessary that actual soundings be positioned properly with respect to bottom contours, which may have been drawn using gridded values. The junctioning of historical and newer data sets is expected to be aided by the use of interactive cartographic workstations.  相似文献   

7.
分析了内波对多波束测深精度影响的两种机理,并指出测线方向与内波传播方向的夹角不同,多波束测深受到影响的程度也不相同。通过对实测数据的分析,获得了内波的规模、波长、运动方向等基本特征,以及初步了解了内波对多波束测深、调查船航迹线、船速等方面产生的影响。该研究结果可以用于指导野外多波束测量遇到内波时的应对措施,以及利用多波束测深系统对内波进行进一步的研究。  相似文献   

8.
Both acoustic and sediment surveys were carried out in the Broughton Archipelago, British Columbia, in order to map a former aquaculture site and calibrate acoustic surveys with georeferenced sediment properties. The acoustic surveys included EM3000 Multibeam (including backscatter) and QTC VIEW™ (Series IV) technologies, while the geotechnical survey entailed Van Veen grab sampling of surface sediments and associated analyses. The two acoustic technologies were consistent in their ability to identify distinct regions of seafloor characterized by rock outcrops, consolidated substrates, or gel-mud depositional fields. Both multibeam backscatter data and QTC VIEW™ number-coded classifications were extracted across a range of circular areas located at each georeferenced sampling station (radii: 2, 3, 4, 5, 8, 12, 16, 20 m). Statistical correlations were observed between backscatter and certain geotechnical properties, such as sediment porosity, sediment grain size fractions (<2 μm, silt content), and particulate sulfur concentration. The areal resolution of backscatter extraction was explored in terms of determining a sensitive calibration technique between backscatter and sediment properties. In general the highest r2 values between backscatter and sediment variables were observed across extraction radii between 8 and 20 m. Such groundtruthing techniques could be used to interpolate seafloor characteristics between sampling stations and provide a steering tool for sampling designs associated with benthic monitoring programs.  相似文献   

9.
多波束水深测量误差源分析与成果质量评定   总被引:1,自引:0,他引:1       下载免费PDF全文
结合多波束测深系统在海洋水深测量实际生产中的应用,分析了受复杂海洋动态环境以及仪器自身原因等内外部因素影响易产生的各种粗差和系统性偏差,探讨了适用于多波束测深系统获取的水深测量成果的质量控制和检验指标,制定了涵盖多波束测深数据采集、处理、成果制作、验收等全过程的质量检验方案。  相似文献   

10.
The filtering and compressing of outer beams to multibeam bathymetric data   总被引:1,自引:0,他引:1  
Some errors and noises are often present in multibeam swath bathymetric data. Echo detection error (EDE) is one of the main errors. It causes the depth error to become bigger in outer beams and looks like sound refraction. But depth errors due to EDEs have a trumpet-shaped appearance, instead of a curved appearance that is caused by the sound refraction errors. EDEs, including systematic acoustic signal detection errors and internal noises, cannot be removed during the correction of sound refraction. It causes depth inconsistencies between adjacent swaths and degrades precision of outer beams. Sometimes, the bathymetric errors caused by EDEs do not even meet the requirements of IHO (International Hydrographic Organization). Therefore, a post-processing method is presented to minimize the EDEs by filtering outliers and compressing outer beams of multibeam bathymetric data. The outliers caused by internal noises are removed by an automatic filter algorithm first. Then the outer beams are compressed to reduce systematic acoustic signal detection errors according to their depths, the calculated depth line and standard deviations (SDs). The automatic filter process is important for calculating the depth line. The selection of inner beams to calculate the average SD of beam depths is crucial to achieving compressing goals. The quality of final bathymetric data in outer beams can be improved by these steps. The method is verified by a field test.  相似文献   

11.
Hydrographic quality bathymetry and quantitative acoustic backscatter data are now being acquired in shallow water on a routine basis using high frequency multibeam sonars. The data provided by these systems produce hitherto unobtainable information about geomorphology and seafloor geologic processes in the coastal zone and on the continental shelf.Before one can use the multibeam data for hydrography or quantitative acoustic backscatter studies, however, it is essential to be able to correct for systematic errors in the data. For bathymetric data, artifacts common to deep-water systems (roll, refraction, positioning) need to be corrected. In addition, the potentially far greater effects of tides, heave, vessel lift/squat, antenna motion and internal time delays become of increasing importance in shallower water. Such artifacts now cause greater errors in hydrographic data quality than bottom detection. Many of these artifacts are a result of imperfect motion sensing, however, new methods such as differential GPS hold great potential for resolving such limitations. For backscatter data, while the system response is well characterised, significant post processing is required to remove residual effects of imaging geometry, gain adjustments and water column effects. With the removal of these system artifacts and the establishment of a calibrated test site in intertidal regions (where the seabed may be intimately examined by eye) one can build up a sediment classification scheme for routine regional seafloor identification.When properly processed, high frequency multibeam sonar data can provide a view of seafloor geology and geomorphology at resolutions of as little as a few decimetres. Specific applications include quantitative estimation of sediment transport rates in large-scale sediment waves, volume effects of iceberg scouring, extent and style of seafloor mass-wasting and delineation of structural trends in bedrock. In addition, the imagery potentially provides a means of quantitative classification of seafloor lithology, allowing sedimentologists the ability to examine spatial distributions of seabed sediment type without resorting to subjective estimation or prohibitively expensive bottom-sampling programs. Using Simrad EM100 and EM1000 sonars as an example, this paper illustrates the nature and scale of possible artifacts, the necessary post-processing steps and shows specific applications of these sonars.  相似文献   

12.
The presently studied numerical model, e.g., composite roughness, is successful for the purpose of seafloor classification employing processed multibeam angular backscatter data from manganese-nodule-bearing locations of the Central Indian Ocean Basin. Hybrid artificial neural network (ANN) architecture, comprised of the self-organizing feature map and learning vector quantization (LVQ), has been implemented as an alternative technique for sea-floor roughness classification, giving comparative results with the aforesaid numerical model for processed multibeam angular backscatter data. However, the composite-roughness model approach is protracted due to the inherent need for processed data including system-gain corrections. In order to establish that tedious processing of raw backscatter values is unessential for efficient classification, hybrid ANN architecture has been attempted here due to its nonparametric approach. In this technical communication, successful employment of LVQ algorithm for unprocessed (raw) multibeam backscatter data indicates true real-time classification application.  相似文献   

13.
The growing demand for marine mineral resources introduces anthropogenic impacts in the coastal zone, among others also through aggregate dredging. Pits created by anchor hopper dredging may affect local sediment budgets, local hydrodynamics and biological habitats. In this study we investigate the processes and time-scales of pits refilling at two extraction sites over 6 years following cessation of dredging. We focused on the evolution of a single pit at a gravel extraction site and the development of a group of three pits located at a sand extraction site. In the case of the gravel pit, a series of six sonograph and two multibeam surveys were evaluated. We observed a spatial expansion of the edge of the pit, decreasing availability of screened sand in the neighbourhood of the pit (a possible source of refilling), and a slowing down of the refilling process with time. At the sandy pit site a series of seven sonographs and two multibeam surveys were available. We observed a smoothing of the edges and larger mean refilling rates than in the gravel pit case. We conclude that the most effective method for monitoring of pit evolution is to make measurements every six months by simultaneously deploying sidescan sonar and multibeam devices.  相似文献   

14.
Abstract

We calibrate a technique to use repeated multibeam sidescan surveys in the deep ocean to recover seafloor displacements greater than a few meters. Displacement measurements from seafloor patches (3?km by 20?km) on the port and starboard side of the ship are used to estimate vertical and across-track displacement. We present displacement measurements from a survey of the Ayu Trough southwest of the Marianas Trench using a 12?kHz multibeam. Vertical and across-track displacement errors for the 12?kHz multibeam sonar are typically 0–2?m with RMS uncertainties of 0.25–0.67 m in the across-track and 0.37–0.75 m in the vertical as determined by 3-way closure tests. The uncertainty of the range-averaged sound velocity is a major error source. We estimate that variations in the sound velocity profile, as quantified using expendable bathythermographs (XBTs) during data collection, contribute up to 0.3?m RMS uncertainty in the across-track direction and 1.6?m RMS uncertainty in the vertical direction.  相似文献   

15.
Information regarding the composition and extent of benthic habitats on the South East Australian continental shelf is limited. In this habitat mapping study, multibeam echosounder (MBES) data are integrated with precisely geo-referenced video ground-truth data to quantify benthic biotic communities at Cape Nelson, Victoria, Australia. Using an automated decision tree classification approach, 5 representative biotic groups defined from video analysis were related to hydro-acoustically derived variables in the Cape Nelson survey area. Using a combination of multibeam bathymetry, backscatter and derivative products produced highest overall accuracy (87%) and kappa statistic (0.83). This study demonstrates that decision tree classifiers are capable of integrating variable data types for mapping distributions of benthic biological assemblages, which are important in maintaining biodiversity and other system services in the marine environment.  相似文献   

16.
This paper deals with the problem of systematic depth errors made in surveying dumped rocks with multibeam echosounder. These errors may induce dangers for navigation in very shallow water areas or huge costs for coastal engineering contractors who perform rock dumping operation and surveying. We analyze results from four different multibeam echosounder systems and compare those data to a reference digital terrain model of a dumped rocks area obtained from a 3D terrestrial laser scanner. The systematic depth errors are statistically described and analysed on local areas. Finally, we propose a look-up table linking the error amplitude with the rock size, resulting from our error analysis.  相似文献   

17.
Surface properties of the seabed in a 180 km2 area of coastal waters (14–57 m depth) off northeast Scotland were mapped by hydro-acoustic discrimination using single and multi-beam echosounders linked to signal processing systems (RoxAnn for the single beam, and Questor Tangent Corporation (QTC) Multiview for the multibeam). Subsequently, two ground truthing surveys were carried out, using grab and TV sampling. The RoxAnn and QTC-Multiview outputs showed strong similarity in their classifications of seabed types. Classifications generated by QTC-Multiview were used to supervise those based on seabed roughness and hardness indices produced by the RoxAnn system and thereby develop a ‘blended’ map based on both systems. The resulting hydro-acoustic classes agreed well with a cluster analysis of data on sediment grain sizes from the grab sampling, and indicated that the area could be described by distinct regions of surface texture and surficial sediments ranging from muddy sand to boulders and rock.  相似文献   

18.
分析了三种不同多波束测深系统回波强度的记录方式及数据结构,基于各自生成声纳图像的特点规律的差异,按其声纳图像不同用途对多波束测深系统进行了归类,其结果可为用户结合自身需求,正确购置多波束测深系统及合理应用声纳图像提供参考.  相似文献   

19.
In recent years, efforts have increased to develop quantitative, computer-directed methods for segmentation of multibeam (MBES) backscatter data. This study utilises MBES backscatter data acquired at Stanton Banks (UK) and subsequently processed through the QTC-Multiview software environment in a bid to evaluate the program's ability to perform unsupervised classification. Statistical comparison with ground-truth data (grab, stills and video) enabled cross validation of acoustic segmentation and biological assemblages observed at the site. 132 unspecified variables were extracted from user-specified rectangular patches of the backscatter image, reduced to three vectors by PCA, then clustered and classified by the software. Multivariate analyses of ground-truth data were conducted on 75 stills images and 51 grab samples. Video footage coincident with the stills was divided into 30 s segments and coded by dominant substrate and species. Cross tabulation determined the interrelationship between software classifications, multivariate analysis of the biological assemblages and coded video segments. Multiview optimally identified 19 classes using the automated clustering engine. These were revised to 6 habitats a posteriori, using combined analysis of ground-truth data and Multiview data products. These habitats broadly correspond to major physiographic provinces within the region. Multivariate statistical analysis reveals low levels of assemblage similarity (<35%) for samples occurring within Multiview classes, irrespective of the mode of acquisition. Coded video data is more spatially appropriate than the other methods of ground-truthing investigated, although it is less well suited to the extraction of truly quantitative data. Multivariate analysis indicates assemblages within physiographically distinct Multiview classes have a low degree of biological similarity, supporting the notion that abiotic proxies may be contraindicative of benthic assemblage variations. QTC-Multiview performs well as a mechanism for computer-assisted segmentation of MBES backscatter imagery into acoustic provinces; however a degree of caution is required prior to ascribing ecological significance to these classifications.  相似文献   

20.
多波束测量过程中,受到多种因素的影响,不可避免地存在各种误差,其中系统某个部件出现故障也不少见,如换能器、行波管、大功率微波开关或表层声速仪等器件功能不正常,引起多波束每 ping (一个发射接收周期) 数据中部分固定波束号的测深结果发生系统性偏移,以 2003 年东海调查 SeaBat900X 数据为例,其在垂直航向正投影平面上出现类似“W”字型的系统误差。本文基于该批次数据,系统分析了该类型系统偏差成因及外观表现,针对性提出基于等均值-方差拟合模型的改正方法,首先对异常区域和正常区域分别拟合地形趋势线,统计其均值和方差;然后以正常区域为基准,对异常区域内数据进行压缩和移动;最后通过面积差法,对数据中存在的折射残差进行消除,从而有效去除“W”型残差。文中实测数据验证了本文算法的有效性和可行性,对多波束其他类型的测深系统偏差处理具有一定的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号