首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time series of velocity profile in the upper 150 m of the equatorial Atlantic was gathered at 23W in 2002 within the PIRATA program. It constitutes the first time series of near surface current measurements simultaneous with altimetric data in the equatorial Atlantic. The surface slope anomaly along the equator is computed from satellite altimetry, and, as a proxy for the pressure gradient along the equator, compared with the wind and near surface current data. In a first step, a time series of the surface slope anomaly along the equator in the Atlantic is computed from the 10-year-long TOPEX/Poseidon sea level anomalies. A sensitivity study establishes the robustness of the calculation. Apart from a 15 cm bias, the equatorial sea surface slope anomalies estimated either from TOPEX/Poseidon or from Jason over the 6-month overlap (Feb.–Aug. 2002) do not reveal drastic differences. We produce two sea surface slope anomaly composite time series for 2002 (one with T/P data, the other with Jason data during the commissioning phase) and compare them to the wind and velocity data at 23W. As expected, the near surface velocity and depth of the upper limit of the equatorial undercurrent (EUC) are extremely well correlated with the surface pressure gradient anomaly. 10-year-long time series of altimetry-derived zonal sea surface slope anomaly and ECMWF ERA40 wind stress are also well correlated. They exhibit similar spectral content and similar anomalous years. This is a first step towards a full analysis of the EUC dynamics using altimetry, PIRATA data (near surface current and subsurface thermohaline structure) and model. These initial comparisons reinforce the utility of Jason measurements for continuing the 10-year and highly accurate TOPEX/Poseidon time series for study of equatorial signals.  相似文献   

2.
A time series of velocity profile in the upper 150 m of the equatorial Atlantic was gathered at 23W in 2002 within the PIRATA program. It constitutes the first time series of near surface current measurements simultaneous with altimetric data in the equatorial Atlantic. The surface slope anomaly along the equator is computed from satellite altimetry, and, as a proxy for the pressure gradient along the equator, compared with the wind and near surface current data. In a first step, a time series of the surface slope anomaly along the equator in the Atlantic is computed from the 10-year-long TOPEX/Poseidon sea level anomalies. A sensitivity study establishes the robustness of the calculation. Apart from a 15 cm bias, the equatorial sea surface slope anomalies estimated either from TOPEX/Poseidon or from Jason over the 6-month overlap (Feb.-Aug. 2002) do not reveal drastic differences. We produce two sea surface slope anomaly composite time series for 2002 (one with T/P data, the other with Jason data during the commissioning phase) and compare them to the wind and velocity data at 23W. As expected, the near surface velocity and depth of the upper limit of the equatorial undercurrent (EUC) are extremely well correlated with the surface pressure gradient anomaly. 10-year-long time series of altimetry-derived zonal sea surface slope anomaly and ECMWF ERA40 wind stress are also well correlated. They exhibit similar spectral content and similar anomalous years. This is a first step towards a full analysis of the EUC dynamics using altimetry, PIRATA data (near surface current and subsurface thermohaline structure) and model. These initial comparisons reinforce the utility of Jason measurements for continuing the 10-year and highly accurate TOPEX/Poseidon time series for study of equatorial signals.  相似文献   

3.
The Kolmogorov-Smirnov (K-S) test is used to compare probability density functions (PDFs) of geostrophic velocities measured by the TOPEX, Poseidon, and Jason altimeters. Velocity PDFs are computed in 2.5° by 2.5° boxes for regions equatorward of 60° latitude. Although velocities measured by the TOPEX and Jason altimeters can differ, on the basis of the K-S test the velocities are statistically equivalent during the ∼200 day period when the satellites followed the same orbit. Full records from TOPEX, Poseidon, and Jason show less agreement, which can be attributed to temporal variability in ocean surface velocities and differing levels of measurement noise.  相似文献   

4.
The Kolmogorov-Smirnov (K-S) test is used to compare probability density functions (PDFs) of geostrophic velocities measured by the TOPEX, Poseidon, and Jason altimeters. Velocity PDFs are computed in 2.5° by 2.5° boxes for regions equatorward of 60° latitude. Although velocities measured by the TOPEX and Jason altimeters can differ, on the basis of the K-S test the velocities are statistically equivalent during the ~200 day period when the satellites followed the same orbit. Full records from TOPEX, Poseidon, and Jason show less agreement, which can be attributed to temporal variability in ocean surface velocities and differing levels of measurement noise.  相似文献   

5.
Guoqi Han 《Marine Geodesy》2004,27(3):577-595
Sea level observations from the tandem TOPEX/Poseidon (T/P) and Jason-1 altimetry missions (2002-2003) are used to study characteristics of sea level and surface currents over the Scotian Shelf and Slope off Nova Scotia. The consistency and error characteristics of T/P and Jason-1 measurements are examined not only in terms of sea level and cross-track current anomalies but also with respect to current anomalies at crossovers, kinematic properties associated with Gulf Stream warm core rings (WCR), and the shelf-edge current transport. Nominal absolute currents are constructed by adding the altimetric geostrophic current anomalies to an annual-mean model circulation field. The concurrent frontal analysis data are analyzed for occurrence of the WCRs and associated kinematic properties are derived from altimetric current anomalies. The comparison of the sea level and cross-track current anomalies from January to July 2002 shows overall good agreement between T/P and Jason, with correlation coefficients different from zero at the 5% significance level at essentially all locations for sea level and at most locations for currents. The cross-track geostrophic current anomalies from January to July 2002 and from September 2002 to December 2003 are further used to calculate the root-mean-square (rms) current magnitude, and the normalized relative vorticity associated with WCRs. The altimetric currents are consistent with each other and complementary to frontal analysis data in deriving the properties of the WCRs. The rms current magnitude is ∼55 cm/s and the normalized relative vorticity is ∼0.15. The model-altimetry combined absolute currents are used to estimate near-surface transport associated with the shelf-edge current, showing good correlation between T/P and Jason estimates and strong seasonal changes. The current anomalies derived from altimetry and moored measurements are significantly (at the 5% significance level) correlated and comparable in the rms magnitude.  相似文献   

6.
GUOQI HAN 《Marine Geodesy》2013,36(3-4):577-595
Sea level observations from the tandem TOPEX/Poseidon (T/P) and Jason-1 altimetry missions (2002–2003) are used to study characteristics of sea level and surface currents over the Scotian Shelf and Slope off Nova Scotia. The consistency and error characteristics of T/P and Jason-1 measurements are examined not only in terms of sea level and cross-track current anomalies but also with respect to current anomalies at crossovers, kinematic properties associated with Gulf Stream warm core rings (WCR), and the shelf-edge current transport. Nominal absolute currents are constructed by adding the altimetric geostrophic current anomalies to an annual-mean model circulation field. The concurrent frontal analysis data are analyzed for occurrence of the WCRs and associated kinematic properties are derived from altimetric current anomalies. The comparison of the sea level and cross-track current anomalies from January to July 2002 shows overall good agreement between T/P and Jason, with correlation coefficients different from zero at the 5% significance level at essentially all locations for sea level and at most locations for currents. The cross-track geostrophic current anomalies from January to July 2002 and from September 2002 to December 2003 are further used to calculate the root-mean-square (rms) current magnitude, and the normalized relative vorticity associated with WCRs. The altimetric currents are consistent with each other and complementary to frontal analysis data in deriving the properties of the WCRs. The rms current magnitude is ~55 cm/s and the normalized relative vorticity is ~0.15. The model-altimetry combined absolute currents are used to estimate near-surface transport associated with the shelf-edge current, showing good correlation between T/P and Jason estimates and strong seasonal changes. The current anomalies derived from altimetry and moored measurements are significantly (at the 5% significance level) correlated and comparable in the rms magnitude.  相似文献   

7.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

8.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

9.
Sea-level variation/change and thermal contribution in the Bering Sea   总被引:2,自引:0,他引:2  
The long-term sea-level trend in the Bering Sea is obtained by the analysis of TOPEX/Poseidon altimeter data, including the data of two tide gauges. The averaged sea-level in the Bering Sea rises at a rate of 2.47 mm/a from 1992 to 2002. The mean sea-level is falling in the most part of the Bering Sea, especially in its central basin, and it is rising in the northeastern part of the Bering Sea. During the 1998/99 change, the sea-level anomaly differences exhibit a significant sea-level anomaly fall in the deep basin of the Bering Sea,which is roughly in the same position where a prominent SST fall exists. The maximal fall of sea-level is about 10 cm in the southwestern part of the Bering Sea, and the maximal fall of about 2℃ in the SST also appeared in the same region as the sea level did.The steric sea-level change due to temperature variations is discussed. The results are compared with the TOPEX/Poseidon altimeter data at the different spatial scales. It is indicated that the seasonal amplitude of the steric height is about 35% of the observed TOPEX/Poseidon amplitude, which is much smaller than the 83% in the mid-latitudes area. The systematic difference between the TOPEX/Poseidon data with the range of about 7.5 cm and the thermal contribution with the range of about 2.5 cm is about 5 cm. This indicates that the thermal effect on the sea level is not as important as the case in the mid-latitudes area. In the Bering Sea, the phase of the steric height leads the observed sea level by about three months.  相似文献   

10.
全球有效波高和风速的时空变化及相关关系研究   总被引:2,自引:1,他引:1  
The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world's oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and characteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.  相似文献   

11.
Eight years of sea surface height data derived from the TOPEX/Poseidon altimeter, are analyzed in order to identify long- and a-periodic behavior of the North Atlantic sea level. For easy interpolation, sea surface height data are converted into sea surface topography data using the geoid derived from EGM96 to degree 360. Principal Component Analysis is used to identify the most dominant spatial and temporal variations. In order to separate dominant periodic signals, a yearly and a half-yearly oscillation, as well as alias effects from imperfect ocean tide corrections, are estimated independently by a Harmonic Analysis and subtracted. The residuals are smoothed by a 90-day moving average filter and examined once again by a PCA, which identifies a low-frequency variation with a period of approximately 6–7 years and an amplitude of about 1 dm, as well as a large sea level change of partially more than ±1 dm within only few months. This sea level change can also be seen in yearly and seasonal sea level residuals. Furthermore, the analysis shows a significant sea level change in 1998 occurring almost over the whole North Atlantic, which is not clearly identified by the PCA. Similar results are obtained by analyzing sea surface temperature and sea level pressure data.  相似文献   

12.
Eight years of sea surface height data derived from the TOPEX/Poseidon altimeter, are analyzed in order to identify long- and a-periodic behavior of the North Atlantic sea level. For easy interpolation, sea surface height data are converted into sea surface topography data using the geoid derived from EGM96 to degree 360. Principal Component Analysis is used to identify the most dominant spatial and temporal variations. In order to separate dominant periodic signals, a yearly and a half-yearly oscillation, as well as alias effects from imperfect ocean tide corrections, are estimated independently by a Harmonic Analysis and subtracted. The residuals are smoothed by a 90-day moving average filter and examined once again by a PCA, which identifies a low-frequency variation with a period of approximately 6-7 years and an amplitude of about 1 dm, as well as a large sea level change of partially more than ±1 dm within only few months. This sea level change can also be seen in yearly and seasonal sea level residuals. Furthermore, the analysis shows a significant sea level change in 1998 occurring almost over the whole North Atlantic, which is not clearly identified by the PCA. Similar results are obtained by analyzing sea surface temperature and sea level pressure data.  相似文献   

13.
《Marine Geodesy》2013,36(3-4):367-382
The verification phase of the Jason-1 satellite altimeter mission presents a unique opportunity for comparing near-simultaneous, independent satellite measurements. Here we examine simultaneous significant wave height measurements by the Jason-1 and TOPEX/Poseidon altimeters. These data are also compared with in situ measurements from deep-ocean buoys and with predicted wave heights from the Wave Watch III operational model. The rms difference between Jason and TOPEX wave heights is 28 cm, and this can be lowered by half through improved outlier editing and filtering of high-frequency noise. Noise is slightly larger in the Jason dataset, exceeding TOPEX by about 7 cm rms at frequencies above 0.05 Hz, which is the frequency at which the coherence between TOPEX and Jason measurements drops to zero. Jason wave heights are more prone to outliers, especially during periods of moderate to high backscatter. Buoy comparisons confirm previous reports that TOPEX wave heights are roughly 5% smaller than buoy measurements for waves between 2 and 5 m; Jason heights in general are 3% smaller than TOPEX. Spurious dips in the TOPEX density function for 3- and 6-m waves, a problem that has existed since the beginning of the mission, can be solved by waveform retracking.  相似文献   

14.
The verification phase of the Jason-1 satellite altimeter mission presents a unique opportunity for comparing near-simultaneous, independent satellite measurements. Here we examine simultaneous significant wave height measurements by the Jason-1 and TOPEX/Poseidon altimeters. These data are also compared with in situ measurements from deep-ocean buoys and with predicted wave heights from the Wave Watch III operational model. The rms difference between Jason and TOPEX wave heights is 28 cm, and this can be lowered by half through improved outlier editing and filtering of high-frequency noise. Noise is slightly larger in the Jason dataset, exceeding TOPEX by about 7 cm rms at frequencies above 0.05 Hz, which is the frequency at which the coherence between TOPEX and Jason measurements drops to zero. Jason wave heights are more prone to outliers, especially during periods of moderate to high backscatter. Buoy comparisons confirm previous reports that TOPEX wave heights are roughly 5% smaller than buoy measurements for waves between 2 and 5 m; Jason heights in general are 3% smaller than TOPEX. Spurious dips in the TOPEX density function for 3- and 6-m waves, a problem that has existed since the beginning of the mission, can be solved by waveform retracking.  相似文献   

15.
应用1993~2002年的Topex/poseidon卫星高度计数据,经沿迹潮汐调和分析方法,提取Sa分潮调和常数。由调和常数内插得到南海及邻近海域分潮波模型。根据潮汐模型计算了各季节平均海面距平并进而计算了平均季节环流,初步分析了海面高变化和季节环流的特征。  相似文献   

16.
卫星跟踪浮标和卫星遥感海面高度中的南海涡旋结构   总被引:9,自引:2,他引:9  
选择4个南海卫星跟踪Argos漂流浮标及同期的TOPEX/Poseidon卫星遥感海面高度资料,研究了南海海域涡旋的活动及空间结构。这4个Argos漂流浮标的轨迹除了基本符合各季节海盆尺度环流趋势外,分别在菲律 宾以西、越南外海、南海中部等海域呈现出中尺度旋转轨迹。这些尺度涡旋现象在同期的TOPEX卫星遥感海面高度异常(SSHA)分布中得到了准确印证,并在诊断得到的地转流场中对应了一系列瞬变的中尺度涡旋运动。  相似文献   

17.
A bottom pressure gauge (BPG) was installed in proximity (3.7 km at closest approach) of Jason-1 and formerly TOPEX/Poseidon (T/P) ground track No. 238 at the Wusi site, located ∼ 10 km offshore off the west coast of Santo Island, Vanuatu, Southwest (SW) Pacific. Sea level variations are inferred from the bottom pressure, seawater temperature, and salinity, corrected for the measured surface atmospheric pressure. The expansion of the water column (steric increase in sea surface height, SSH) due to temperature and salinity changes is approximated by the equation of state. We compare time series of SSH derived from T/P Side B altimeter Geophysical Data Records (GDR) and Jason-1 Interim Geophysical Data Records (IGDR), with the gauge-inferred sea level variations. Since altimeter SSH is a geocentric measurement, whereas the gauge-inferred observation is a relative sea level measurement, SSH comparison is conducted with the means of both series removed in this study. In addition, high-rate (1-Hz) bottom pressure implied wave heights (H1/3) are compared with the significant wave height (SWH) measured by Jason-1. Noticeable discrepancy is found in this comparison for high waves, however the differences do not contribute significantly to the difference in sea level variations observed between the altimeter and the pressure gauge. In situ atmospheric pressure measurements are also used to verify the inverse barometer (IB) and the dry troposphere corrections (DTC) used in the Jason IGDR. We observe a bias between the IGDR corrections and those derived from the local sensors. Standard deviations of the sea level differences between T/P and BPG is 52 mm and is 48 mm between Jason and BPG, indicating that both altimeters have similar performance at the Wusi site and that it is feasible to conduct long-term monitoring of altimetry at such a site.  相似文献   

18.
Jason, the successor to the TOPEX/POSEIDON (T/P) mission, has been designed to continue seamlessly the decade-long altimetric sea level record initiated by T/P. Intersatellite calibration has determined the relative bias to an accuracy of 1.6 mm rms. Tide gauge calibration of the T/P record during its original mission shows a drift of -0.1 ± 0.4 mm/year. The tide gauge calibration of 20 months of nominal Jason data indicates a drift of -5.7 ± 1.0 mm/year, which may be attributable to errors in the orbit ephemeris and the Jason Microwave Radiometer. The analysis of T/P and Jason altimeter data over the past decade has resulted in a determination of global mean sea level change of +2.8 ± 0.4 mm/year.  相似文献   

19.
The monthly average values of the anomalies of the ocean level (according to the satellite data for 1992–2002) and the annual average dynamic heights (hydrological data) are used to compute the seasonal cycle of geostrophic currents on the surface of the Atlantic Ocean. It is shown that the west and east currents are intensified with a phase difference of several months. At the same time, their latitudinal displacements are quasisynchronous. A delay of the seasonal signal in the east-west direction of about 2–3 months (on the average) is typical of currents in the tropical zone of the Northern Hemisphere. On the contrary, in the South Atlantic, the seasonal signal propagates in the west-east direction and its phase delay can be as large as almost six months. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 60–71, May–June, 2006.  相似文献   

20.
应用ROMS数值模式配置基本实验模拟了2004年到2006年中国东部海域海平面的季节变化。模拟结果与TOPEX/Poseidon(T/P)卫星高度计观测结果基本一致,海平面年较差从中国沿岸到黑潮路径逐渐变小。将数值模式的风应力项去掉,配置对比实验。与基本实验结果对比发现,对比实验海平面仍然具有季节变化,但是闽浙沿岸和苏北沿岸海平面春夏季异常偏低、秋冬季异常偏高现象消失,中国沿岸向太平洋的海平面变化减弱。春季和秋季,渤、黄海和黑潮附近海平面异于东海的现象减弱。对比实验海平面的年较差的数值明显减小,从近岸向黑潮海平面年较差渐变的过程消失。整个渤黄海的海平面年较差近似。对比实验海平面年较差占基本实验海平面年较差比率从近岸向黑潮路径逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号