首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the Vertical Offshore Reference Frames (VORF) project sponsored by the U. K. Hydrographic Office, a new model for Sea Surface Topography (SST) around the British Isles has been developed. For offshore areas (greater than 30 km from the coast), this model is largely derived from satellite altimetry. However, its accuracy and level of detail have been enhanced in coastal areas by the inclusion of not only the 60 PSMSL tide gauges with long-term records around the coasts of the United Kingdom and Ireland but also some 385 gauges established at different epochs and for different observation spans by the U. K. Admiralty. All tide gauge data were brought into a common reference frame by a combination of datum models and direct GPS observations, but a more significant challenge was to bring all short-term sea level observations to an unbiased value at a common epoch. This was achieved through developing a spatial-temporal correlation model for the variations in mean sea level around the British Isles, which in turn meant that gauges with long-term observation spans could be used as control points to improve the accuracy of Admiralty gauges. It is demonstrated that the latter can contribute point observations of mean sea level (MSL) with a precision of 0.078 m. A combination of least squares collocation and interpolation was developed to merge the coastal point and offshore gridded data sets, with particular algorithms having to be developed for different configurations of coastal topology. The resulting model of sea surface topography is shown to present a smooth transition from inshore coastal areas to offshore zones. Further benefits of the techniques developed include an enhanced methodology for detecting datum discontinuities at permanent tide gauges.  相似文献   

2.
Applications of Marine Geodesy in Support of National Objectives in Ocean Science, Engineering and Operations a study prepared for the Marine Technology Society, by Narendra Saxena, College of Engineering, University of Hawaii, 1980, 176 pages.

Plate Tectonics and Crustal Evolution by K.E. Condie (New York: Pergamon Press, 1979), 288 pages, $35.00.

Bottom‐Interacting Ocean Accoustics by W.A. Kuperman and F.B. Jensen (eds.). NATO Conference Series, Series IV: Marine Sciences, Volume 5 (New York: Plenum Press, 1980), 717 pages, hardcover, U.S. $75.00.  相似文献   

3.
Wanshan area has been chosen to be the specified field to calibrate and validate(Cal/Val) the HY-2 altimeter and its follow-on satellites. In March 2018, an experiment has been conducted to determine the sea surface height(SSH) under the HY-2 A ground track(Pass No. 203). A GPS towing-body(GPS-TB) was designed to measure the SSH covering an area of about 6 km×28 km wide centered on the HY-2 A altimeter satellite ground track. Three GPS reference stations, one tide gauge and a GPS buoy were placed in the research area, in order to process and resolve the kinematic solution and check the precision of the GPS-TB respectively. All the GPS data were calculated by the GAMIT/GLOBK software and TRACK module. The sea surface was determined by the GPS-TB solution and the tide gauge placed on Zhiwan Island. Then the sea surface of this area was interpolated by Arc GIS10.2 with ordinary Kriging method. The results showed that the precision of the GPS-TB is about 1.10 cm compared with the tide gauge placed nearby, which has an equivalent precision with the GPS buoy. The interpolated sea surface has a bias of –1.5–4.0 cm with standard deviation of 0.2–2.4 cm compared with the checking line. The gradient of the measured sea surface is about 1.62 cm/km along the HY-2 orbit which shows a good agreement compared with the CLS11 mean sea surface(MSS). In the Cal/Val of satellites, the sea surface between the tide gauge/GPS buoy and the footprint of altimeter can be improved by this work.  相似文献   

4.
We have computed estimates of the rate of vertical land motion in the Mediterranean Sea from differences of sea level heights measured by the TOPEX/Poseidon radar altimeter and by a set of tide gauge stations. The comparison of data at 16 tide gauges, using both hourly data from local datasets and monthly data from the PSMSL dataset, shows a general agreement, significant differences are found at only one location. Differences of near-simultaneous, monthly and deseasoned monthly sea level height time-series have been considered in order to reduce the error in the estimated linear-term. In a subset of 23 tide gauge stations the mean accuracy of the estimated vertical rates is 2.3 ± 0.8 mm/yr. Results for various stations are in agreement with estimates of vertical land motion from geodetic methods. A comparison with vertical motion estimated by GPS at four locations shows a mean difference of ?0.04 ± 1.8 mm/yr, however the length of the GPS time-series and the number of locations are too small to draw general conclusions.  相似文献   

5.
We have computed estimates of the rate of vertical land motion in the Mediterranean Sea from differences of sea level heights measured by the TOPEX/Poseidon radar altimeter and by a set of tide gauge stations. The comparison of data at 16 tide gauges, using both hourly data from local datasets and monthly data from the PSMSL dataset, shows a general agreement, significant differences are found at only one location. Differences of near-simultaneous, monthly and deseasoned monthly sea level height time-series have been considered in order to reduce the error in the estimated linear-term. In a subset of 23 tide gauge stations the mean accuracy of the estimated vertical rates is 2.3 ± 0.8 mm/yr. Results for various stations are in agreement with estimates of vertical land motion from geodetic methods. A comparison with vertical motion estimated by GPS at four locations shows a mean difference of -0.04 ± 1.8 mm/yr, however the length of the GPS time-series and the number of locations are too small to draw general conclusions.  相似文献   

6.
利用GPS水准法和同步改正法实现了跨海高程基准的传递。GPS传递结果与同步改正法传递结果相差3cm。结果表明,GPS结合大地水准面精化技术实现跨海高程基准传递省时省力、方便可靠。  相似文献   

7.
GPS技术可以确定验潮站水准点的地壳垂直形变,结合验潮数据获得的海平面相对变化,可以确定海平面的绝对变化。采用我国3个沿海验潮站两期GPS观测数据,计算了这些点位的地壳垂直运动速率。提出要监测验潮站的地壳垂直运动,最好采用多年连续GPS观测数据。  相似文献   

8.
The mean sea level along the coasts of the Skagerrak, the Kattegat, and the Danish Straits—i.e., the transition area between the North Sea and the Baltic Sea—has been computed geodetically. The basis consists of mean sea level data from Denmark, Norway, and Sweden in various more or less inappropriate height systems. These are transformed and unified into a common height system relevant for oceanographic purposes to show the deviation of the mean sea level (1960) from the mean geoid, with Normaal Amsterdams Peil (NAP) as zero. The geodetically determined mean sea surface is compared with oceanographic model results for parts of the area. Among other findings, the outflow of low‐salinity water from the Baltic Sea, as well as its separation from high‐salinity North Sea water along the Kattegat‐Skagerrak front are clearly revealed.  相似文献   

9.
稳态海面地形(MDT)是大地测量学家和海洋学家共同关心的一个重要物理量。该文基于WHU2009全球平均海面高模型和GO_CONS_GCF_2_TIM_R3纯GOCE重力场模型,采用几何法经高斯滤波处理后确定了全球稳态海面地形,与CLS09及DTU10M DTs相比,其差值均方根RMS均小于8 cm,表明该文结果具有较高的精度;根据地转流方程计算了相应的表层地转流,与GRACE重力场模型GGM03S结果相比,GOCE重力场模型所确定的表层地转流在墨西哥湾流、黑潮及厄加勒斯海流等海域均体现了更强的流速和更多的细部特征,验证了GOCE在洋流探测中的优势。  相似文献   

10.
Sea level changes in the Baltic Sea are dominated by internal, short-term variations that are mostly caused by the ephemeral nature of atmospheric conditions over the Baltic area. Tides are small and their influence decreases from western parts of the Baltic Sea to the Baltic Proper. Superimposed to the large short-term sea level changes (up to few decimeters from day to day) are seasonal and interannual variations (centimeters to decimeters). This study focuses on the comparison of sea surface heights obtained from observations and from a high resolution oceanographic model of the Baltic Sea. From this comparison, the accuracy of the modeled sea surface variations is evaluated, which is a necessary precondition for the further use of the oceanographic model in geodetic applications. The model reproduces all observed Baltic sea level variations very reliably with an accuracy of 5 to 9 cm (rms) for short-term variations (up to 2 months) and 8 cm (rms) for long-term variations (>2 months). An additional improvement of the model can be attained by including long-period sea level variations of the North Sea. The model performs well also in the case of extreme sea level events, as is shown for a major storm surge that occurred at the southern coast of the Baltic Sea in November 1995.  相似文献   

11.
This paper attempts to assess the use of Global Navigation Satellite System (GNSS) as an accurate, reliable, and easy tool for sea level measurement. The GNSS technique was incorporated into a float based tide gauge system. A prototype of such an instrument was developed based on principles of conventional tide gauges, where high frequency noise is reduced mechanically. The ability of the GNSS based tide gauge (GTG) to monitor sea levels was tested in several experiments. The performance of the GTG was compared to that of a traditional tide gauge. The method of data analysis and data comparison between the GPS measurements and the tide gauge data is presented. The results show that the GTG is equal in performance to the traditional float operated tide gauge. It seems that the GTG is capable of delivering the same level of accuracy (1 cm), and its results are as reliable as its competitor, the traditional float tide gauge. The suggested instrument can be easily integrated into the array of permanent GNSS stations and assist in absolute measurements of sea level changes, caused by global warming and the greenhouse effect, for example.  相似文献   

12.
瞬时海面高模型及其在地球同步卫星定位中的应用   总被引:2,自引:0,他引:2  
刘长建  韩春好 《海洋测绘》2004,24(1):9-12,16
首先给出了两种瞬时海面高模型并进行了精度分析。通过模拟定位,验证了这两种模型在地球同步卫星定位应用中的可行性。最后讨论了这两种模型在地球同步卫星定位中的应用前景,指出了进一步提高这两种模型精度的关键。  相似文献   

13.
针对平均海平面的定义,分别介绍了利用验潮站资料和卫星高度计资料确立平均海平面的方法原理,并对2种方法的特性及存在的问题进行了比较阐述,确定了以沿岸长期验潮站为控制条件,对卫星测高数据确定的高分辨率高精度的平均海平面网格模型进行改正,最终构建平均海平面与国家大地坐标系关系的研究方法.  相似文献   

14.
沿岸陆地垂向运动是沿海相对海平面变化的重要组成部分,可以通过GPS直接观测或者联合验潮站和高度计资料进行推算,前者较为精确但目前欠发达国家和地区沿岸数据缺乏,后者资料相对丰富但准确性有待验证。本研究利用全球191个验潮站数据及同步的高度计资料和GPS监测数据,对两种方法得到的陆地垂向运动速率进行了比较,发现对于陆地垂向运动明显的站位,两种方法计算的趋势相同比例为74%;陆地垂向运动速率的空间分布表现为高纬度沿岸陆地抬升和中低纬度不同程度的陆地沉降,这与冰川均衡调整(GIA)模型结果和近期GRACE重力卫星观测较为符合,说明了基于验潮站和高度计联合推算沿岸陆地垂向运动的方法具有较高可行性。将此方法应用于中国沿岸,基于29个长期验潮站数据计算了中国沿海1993—2016年陆地垂向运动速率,发现存在以长江口为分界北升南降的空间特征;南部沿岸陆地沉降会加剧沿海相对海平面上升,给区域经济发展和人民生活带来风险。  相似文献   

15.
Abstract

The ocean mean dynamic topography (MDT) is the surface representation of the ocean circulation. The MDT may be determined by the ocean approach, which involves temporal averaging of numerical ocean circulation model information, or by the geodetic approach, wherein the MDT is derived using the ellipsoidal height of the mean sea surface (MSS), or mean sea level (MSL) minus the geoid as the geoid. The ellipsoidal height of the MSS might be estimated either by satellite or coastal tide gauges by connecting the tide gauge datum to the Earth-centred reference frame. In this article we present a novel approach to improve the coastal MDT, where the solution is based on both satellite altimetry and tide gauge data using new set of 302 tide gauges with ellipsoidal heights through the SONEL network. The approach was evaluated for the Northeast Atlantic coast where a dense network of GNSS-surveyed tide gauges is available. The typical misfit between tide gauge and satellite or oceanographic MDT was found to be around 9?cm. This misfit was found to be mainly due to small scale geoid errors. Similarly, we found, that a single tide gauge places only weak constraints on the coastal dynamic topography.  相似文献   

16.
Abstract

A project was initiated in 1986 to investigate an apparent significant discrepancy between geodetic and oceanographic leveling determinations of mean sea level around the coast of Great Britain. In oceanographic terms this discrepancy is equivalent to a sea slope in a North‐South direction.

The project, which lasted for 3 years, has been carried out in conjunction with research groups at the University of Edinburgh, the Proudman Oceanographic Laboratory, and the Ordnance Survey of Great Britain. It has involved combining Global Positioning System (GPS)‐derived ellipsoidal height differences with a high‐precision geoid, leading to an independent determination of the orthometric heights of tide gauges along the east coast of Great Britain.

A major GPS campaign was observed in May 1988. Measurements were made at time gauges between Leith and Lowestoft while simultaneously making measurements at fiducial sites. The results of the 1988 and subsequent campaigns are presented and discussed, and details are given of further observation campaigns to monitor the vertical movement of tide gauges around the coast of Britain by GPS.  相似文献   

17.
To better monitor the vertical crustal movements and sea level changes around Greenland, multiple data sources were used in this paper, including global positioning system(GPS), tide gauge, satellite gravimetry, satellite altimetry, glacial isostatic adjustment(GIA). First, the observations of more than 50 GPS stations from the international GNSS service(IGS) and Greenland network(GNET) in 2007–2018 were processed and the common mode error(CME) was eliminated with using the principal component a...  相似文献   

18.
我国海域无缝垂直基准面的选择   总被引:1,自引:0,他引:1  
介绍了椭球面、大地水准面、平均海面和海图深度基准面的定义。系统分析了潮汐基准面和大地水准面不适合作为无缝垂直基准面的原因,及以椭球面作为无缝垂直基准面的合理性和可行性,并建议选择WGS84椭球面作为我国海域的无缝垂直基准面。  相似文献   

19.
On May 22 and 24, 1995, a buoy, designed to float with the water surface and equipped with a GPS antenna, was deployed off the California coast at 16 locations near the Texaco oil platform, Harvest. The purpose of this deployment was threefold:.(1) to demonstrate the ability of this style of buoy to calibrate the TOPEXIPOSEIDON (TIP) altimeter range measurement as it overflew the platform: (2) to demonstrate the ability of the buoy to map the ocean's surface over a 10‐km‐diameter circle surrounding platform Harvest; and (3) to demonstrate the ability of the buoy to measure the sea state accurately. During the 1.6‐h period surrounding the time of the TIP overflight, the buoy‐measured sea level never differed by more than 1.5 cm from the sea level measured by the National Oceanic and Atmospheric Administration (NOAA) acoustic tide gauge on the platform. The good agreement demonstrated the capability of this style of buoy to calibrate altimetric satellites. A paraboloid was fitted to sea level from 16 buoy locations surrounding the platform with a 2.5‐cm rms residual. On a 10‐km‐diameter circle centered on the platform, the paraboloid was within 2.4‐cm rms of the Ohio State University Mean Sea Surface (OSUMSS95). H u3 values calculated around the overflight times from the GPS buoy vertical positions had a mean difference of 2 cm and a standard deviation of 18 cm from values calculated from the University of Colorado (CU) pressure gauge system. At the time of the overflight, H u3 was near 2 m, while 3‐m seas were observed by the CU pressure system during measurements later in the day. This experiment demonstrates that a simple wave‐rider buoy design can give comparable accuracies to that of more complex GPS platforms such as the University of Colorado's spar buoy, but is much easier to deploy and capable of being used in more severe weather conditions. Thus, such a buoy and derivative designs have great potential for calibrating altimetric experiments, and for oceanographic and geodetic mapping experiments.  相似文献   

20.
Abstract

The combined use of Global Positioning System (GPS) differential positioning as well as ERS‐1 altimeter data is considered in implementing geodetic vertical datums and their unification. The article describes concepts, techniques, practical realization, and associated questions and problems. Particular aspects in view of small sea surface perturbations in offshore areas in determining sea surface components (variable and steady state) are discussed. The combinations of tide gauge data with altimetry and (mainly) GPS positioning for geodetic purposes are discussed in detail. Special attention is devoted to the associated reference systems as well as to the combination of dynamic (level and nonlevel surfaces) with geometric quantities. The discussion is based on a specific ERS‐1 project supported by the National Science Foundation. Implications and practical impact of the project are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号