首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
The Jason-1 dual-frequency nadir ionosphere Total Electron Content (TEC) for 10-day cycles 1–67 is validated using absolute TEC measured by Japan's GPS Earth Observation Network (GEONET), or the GEONET Regional Ionosphere Map (RIM). The bias estimates (Jason–RIM) are small and statistically insignificant: 1.62 ± 9 TECu (TEC unit or 1016 electrons/m2, 1 TECu = 2.2 mm delay at Ku-band) and 0.73 ± 0.05 TECu, using the along-track difference and Gaussian distribution method, respectively. The bias estimates are –3.05 ± 10.44 TECu during daytime passes, and 0.02 ± 8.05 TECu during nighttime passes, respectively. When global Jason-1 TEC is compared with the Global Ionosphere Map (GIM) from the Center for Orbit Determination in Europe (or CODE) TEC, the bias (Jason–GIM) estimate is 0.68 ± 1.00 TECu, indicating Jason-1 ionosphere delay at Ku-band is longer than GIM by 3.1 mm, which is at present statistically insignificant. Significant zonal distributions of biases are found when the differences are projected into a sun-fixed geomagnetic reference frame. The observed biases range from –7 TECu (GIM larger by 15.4 mm) in the equatorial region, to +2 TECu in the Arctic region, and to +7 TECu in the Antarctica region, indicating significant geographical variations. This phenomena is primarily attributed to the uneven and poorly distributed global GPS stations particularly over ocean and near polar regions. Finally, when the Jason-1 and TOPEX/Poseidon (T/P) TECs were compared during Jason-1 cycles 1–67 (where cycles 1–21 represent the formation flight with T/P, cycles 22–67 represent the interleave orbits), the estimated bias is 1.42 ± 0.04 TECu. It is concluded that the offset between Jason/TOPEX and GPS (RIM or GIM) TECs is < 4 mm at Ku-band, which at present is negligible.  相似文献   

2.
《Marine Geodesy》2013,36(3-4):261-284
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

3.
《Marine Geodesy》2013,36(3-4):335-354
This article describes absolute calibration results for both JASON-1 and TOPEX Side B (TSB) altimeters obtained at the Lake Erie calibration site, Marblehead, Ohio, USA. Using 15 overflights, the estimated JASON altimeter bias at Marblehead is 58 ± 38 mm, with an uncertainty of 19 mm based on detailed error analysis. Assuming that the TSB bias is negligible, relative bias estimates using both data from the TSB-JASON formation flight period and data from 48 water level gauges around the entire Great Lakes confirmed the Marblehead results. Global analyses using both the formation flight data and dual-satellite (TSB and JASON) crossovers yield a similar relative bias estimate of 146 ± 59 mm, which agrees well with open ocean absolute calibration results obtained at Harvest, Corsica, and Bass Strait (e.g., Watson et al. 2003). We find that there is a strong dependence of bias estimates on the choice of sea state bias (SSB) models. Results indicate that the invariant JASON instrument bias estimated oceanwide is 71 mm, with additional biases of 76 mm or 28 mm contributed by the choice of Collecte Localisation Satellites (CLS) SSB or Center for Space Research (CSR) SSB model, respectively. Similar analysis in the Great Lakes yields the invariant JASON instrument bias at 19 mm, with the SSB contributed biases at 58 mm or 13 mm, respectively. The reason for the discrepancy is currently unknown and warrants further investigation. Finally, comparison of the TOPEX/POSEIDON mission (1992–2002) data with the Great Lakes water level gauge measurements yields a negligible TOPEX altimeter drift of 0.1 mm/yr.  相似文献   

4.
Monitoring of altimeter microwave radiometer measurements is necessary in order to identify radiometer drifts or offsets that if uncorrected will introduce systematic errors into ocean height measurements. To examine TOPEX Microwave Radiometer (TMR) and Jason-1 Microwave Radiometer (JMR) behavior, we have used coincident wet zenith delay estimates from Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) geodetic sites near altimeter ground tracks. We derived a TMR path delay drift rate of ?1.1 ± 0.1 mm/yr using GPS data for the period from 1993.0–1999.0 and ?1.2 ± 0.5 mm/yr using VLBI data. Thereafter, the drift appears to have leveled off. Already after 2.3 years (82 cycles) of the Jason-1 mission, it is clear that there have been significant systematic errors in the JMR path delay measurements. From comparison with GPS wet delays, there is an offset of ?5.2 ± 0.6 mm at about cycle 30 and a more abrupt offset of ?11.5 ± 0.8 mm at cycle 69. If we look at the behavior of the JMR coldest brightness temperatures, we see that the offsets near cycle 30 and cycle 69 are mainly caused by corresponding offsets in the 23.8 GHz channel of ?0.49 ± 0.12 K and ?1.18 ± 0.13 K, although there is a small 34.0 GHz offset at cycle 69 of 0.75 ± 0.22 K. Drifts in the 18.0 and 34.0 GHz channels produce a small path delay drift of 0.3 ± 0.5 mm/yr.  相似文献   

5.
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

6.
The geodetic Corsica site was set up in 1998 in order to perform altimeter calibration of the TOPEX/Poseidon (T/P) mission and subsequently, Jason-1 and OSTM/Jason-2. The scope of the site was widened in 2005 in order to undertake the calibration of the Envisat mission and most recently of SARAL/AltiKa. Here we present the first results from the latter mission using both indirect and direct calibration/validation approaches. The indirect approach utilizes a coastal tide gauge and, as a consequence, the altimeter derived sea surface height (SSH) needs to be corrected for the geoid slope. The direct approach utilizes a novel GPS-based system deployed offshore under the satellite ground track that permits a direct comparison with the altimeter derived SSH. The advantages and disadvantages of both systems (GPS-based and tide gauges) and methods (direct or indirect) will be described and discussed. Our results for O/IGD-R data show a very good consistency for these three kinds of products: their derived absolute SSH biases are consistent within 17 mm and their associated standard deviation ranges from 31 to 35 mm. The AltiKa absolute SSH bias derived from GPS-zodiac measurement using the direct method is ?54 ±10 mm based on the first 13 cycles.  相似文献   

7.
This article describes absolute calibration results for both JASON-1 and TOPEX Side B (TSB) altimeters obtained at the Lake Erie calibration site, Marblehead, Ohio, USA. Using 15 overflights, the estimated JASON altimeter bias at Marblehead is 58 ± 38 mm, with an uncertainty of 19 mm based on detailed error analysis. Assuming that the TSB bias is negligible, relative bias estimates using both data from the TSB-JASON formation flight period and data from 48 water level gauges around the entire Great Lakes confirmed the Marblehead results. Global analyses using both the formation flight data and dual-satellite (TSB and JASON) crossovers yield a similar relative bias estimate of 146 ± 59 mm, which agrees well with open ocean absolute calibration results obtained at Harvest, Corsica, and Bass Strait (e.g., Watson et al. 2003). We find that there is a strong dependence of bias estimates on the choice of sea state bias (SSB) models. Results indicate that the invariant JASON instrument bias estimated oceanwide is 71 mm, with additional biases of 76 mm or 28 mm contributed by the choice of Collecte Localisation Satellites (CLS) SSB or Center for Space Research (CSR) SSB model, respectively. Similar analysis in the Great Lakes yields the invariant JASON instrument bias at 19 mm, with the SSB contributed biases at 58 mm or 13 mm, respectively. The reason for the discrepancy is currently unknown and warrants further investigation. Finally, comparison of the TOPEX/POSEIDON mission (1992-2002) data with the Great Lakes water level gauge measurements yields a negligible TOPEX altimeter drift of 0.1 mm/yr.  相似文献   

8.
One possible technique to validate the observations of altimeter missions is the comparison with sea-surface heights measured by tide gauges. In our investigation, we compared observations of the two tide gauge stations, Sassnitz and Warnemünde, which are located at the southern coast of the Baltic Sea, with sea-surface heights obtained from the altimeter missions Geosat, ERS-1, ERS-2, and TOPEX/Poseidon. For this purpose, the compared sea-surface heights were related to a common reference system and extrapolated to a common location. GPS observations, leveling data, regional geoid information, sea-surface topography, and postglacial rebound were included in the analysis. Considering the uncertainties of all model components, a more reliable estimation of the error budget (source, type, and magnitude of the errors) was performed. The obtained absolute altimeter biases are (-243 - 32) mm for Geosat, (467 - 19) mm for ERS-1, (76 - 19) mm for ERS-2, and (13 - 18) mm for TOPEX.  相似文献   

9.
基于Jason-2高度计2015年地球物理数据集(GDR)38个周期太平洋海域的全球电离层图(GIM)电离层校正值和双频校正值的数据,分不同季度和不同纬度区域比较二者的差异,结果表明:GIM值与双频校正值之间存在明显的差异,GIM校正值普遍高于双频校正值,说明GIM高估了电离层路径延迟,GIM校正值与双频校正值的差异与季节和纬度区间有关。用梯度下降法得到GIM值的修正方程,将修正方程应用于2016年Jason-2的全年数据,修正后的GIM值与双频校正值十分接近,在各年份中均具有良好的适用性。在单频高度计不能使用电离层双频校正算法的情况下,可以利用不同季度和不同纬度区域的修正方程对同等高度的高度计GIM值进行修正以达到双频校正值的精度水平。  相似文献   

10.
The location of the GAVDOS facility is under a crossing point of the original ground-tracks of TOPEX/Poseidon and the present ones for Jason-1, and adjacent to an ENVISAT pass, about 50 km south of Crete, Greece. Ground observations and altimetry comparisons over cycles 70 to 90, indicate that a preliminary estimate of the absolute measurement bias for the Jason-1 altimeter is 144.7 ± 15 mm. Comparison of Jason microwave radiometer data from cycles 37 and 62, with locally collected water vapor radiometer and solar spectrometer observations indicate a 1–2 mm agreement.  相似文献   

11.
We have computed estimates of the rate of vertical land motion in the Mediterranean Sea from differences of sea level heights measured by the TOPEX/Poseidon radar altimeter and by a set of tide gauge stations. The comparison of data at 16 tide gauges, using both hourly data from local datasets and monthly data from the PSMSL dataset, shows a general agreement, significant differences are found at only one location. Differences of near-simultaneous, monthly and deseasoned monthly sea level height time-series have been considered in order to reduce the error in the estimated linear-term. In a subset of 23 tide gauge stations the mean accuracy of the estimated vertical rates is 2.3 ± 0.8 mm/yr. Results for various stations are in agreement with estimates of vertical land motion from geodetic methods. A comparison with vertical motion estimated by GPS at four locations shows a mean difference of ?0.04 ± 1.8 mm/yr, however the length of the GPS time-series and the number of locations are too small to draw general conclusions.  相似文献   

12.
The radiometers on board the satellites ERS-1, TOPEX/Poseidon, ERS-2, GFO, Jason-1, and Envisat measure brightness temperatures at two or three different frequencies to determine the total columnal water vapor content and wet tropospheric path delay, a major correction to the altimeter range measurements. In order to asses the long-term stability of the path delay, the radiometers are calibrated against vicarious cold and hot references, against each other, and against several atmospheric models. Four of these radiometers exhibit significant drifts in at least one of the channels, resulting in yet unmodeled errors in path delay of up to 1 mm/year, thus limiting the accuracy at which global sea level rise can be inferred from the altimeter range measurements.  相似文献   

13.
The radiometers on board the satellites ERS-1, TOPEX/Poseidon, ERS-2, GFO, Jason-1, and Envisat measure brightness temperatures at two or three different frequencies to determine the total columnal water vapor content and wet tropospheric path delay, a major correction to the altimeter range measurements. In order to asses the long-term stability of the path delay, the radiometers are calibrated against vicarious cold and hot references, against each other, and against several atmospheric models. Four of these radiometers exhibit significant drifts in at least one of the channels, resulting in yet unmodeled errors in path delay of up to 1 mm/year, thus limiting the accuracy at which global sea level rise can be inferred from the altimeter range measurements.  相似文献   

14.
《Marine Geodesy》2013,36(3-4):305-317
It is demonstrated that the Jason-1 measurements of sea surface height (SSH), wet path delay, and ionosphere path delay are within required accuracies, via a global cross-calibration with similar measurements made by TOPEX/Poseidon (T/P) over a 6-month period. Since the two satellites were on the same groundtrack separated in time by only 70 s, measurements were recorded at approximately the same location and time. The variations in the wet path delay measured by Jason-1 compared to T/P are only 5 mm RMS, well within the required performance of 1.2 cm RMS. The RMS of the ionosphere differences is also well within the expected values, with a mean RMS of 1.2 cm. The largest difference is that the Jason-1 SSH is biased high relative to T/P SSH by 144 mm after the T/P and Jason-1 data are both corrected with improved sea state bias (SSB) models. However, the bias will change if a different SSB model is used, so the user should be cautious that the bias used matches the SSB models. The bias is generally constant within ± 10 mm in the open ocean, but appears to be higher or lower in some regions. Additionally, the SSH has been verified by comparison with 36 island tide gauges over the same period. After removing the global relative bias, the Jason-1 SSH data agree with tide gauges within 3.7 cm RMS and with T/P data within about 3.5 cm RMS on average for 1-s measurements, meeting the required accuracy of 4.2 cm RMS.  相似文献   

15.
The sea surface height (SSH) derived from radar altimetry is determined by the distance from the satellite to the sea surface and the altitude of the satellite above a reference ellipsoid. The former is measured by the radar altimeter, while the latter is determined by the precision orbit determination (POD). The clock for the POD equipment is independent from that of the radar altimeter onboard the HY-2A satellite. The time tag bias, which is the bias between the time tags provided by the two independent clocks, can greatly affect the SSH measurement accuracy of HY-2A altimeter. This paper estimates the time tag bias of HY-2A radar altimeter using the crossover differences obtained from the sensor geophysical dataset records (SGDR) from February 2014. We obtained a ?0.61-ms Ku-band time tag bias and a ?5.61-ms C-band time tag bias. After we added the time tag bias corrections to the SSH measurements from Ku and C bands, respectively, the means and standard deviations of the global crossover differences can be significantly reduced. We then applied the SSH measurements with the time tag biases corrected to calculate the HY-2A dual-frequency ionosphere correction, significantly improving the accuracy of the HY-2A dual-frequency ionosphere correction.  相似文献   

16.
Sea-level variation/change and thermal contribution in the Bering Sea   总被引:2,自引:0,他引:2  
The long-term sea-level trend in the Bering Sea is obtained by the analysis of TOPEX/Poseidon altimeter data, including the data of two tide gauges. The averaged sea-level in the Bering Sea rises at a rate of 2.47 mm/a from 1992 to 2002. The mean sea-level is falling in the most part of the Bering Sea, especially in its central basin, and it is rising in the northeastern part of the Bering Sea. During the 1998/99 change, the sea-level anomaly differences exhibit a significant sea-level anomaly fall in the deep basin of the Bering Sea,which is roughly in the same position where a prominent SST fall exists. The maximal fall of sea-level is about 10 cm in the southwestern part of the Bering Sea, and the maximal fall of about 2℃ in the SST also appeared in the same region as the sea level did.The steric sea-level change due to temperature variations is discussed. The results are compared with the TOPEX/Poseidon altimeter data at the different spatial scales. It is indicated that the seasonal amplitude of the steric height is about 35% of the observed TOPEX/Poseidon amplitude, which is much smaller than the 83% in the mid-latitudes area. The systematic difference between the TOPEX/Poseidon data with the range of about 7.5 cm and the thermal contribution with the range of about 2.5 cm is about 5 cm. This indicates that the thermal effect on the sea level is not as important as the case in the mid-latitudes area. In the Bering Sea, the phase of the steric height leads the observed sea level by about three months.  相似文献   

17.
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

18.
《Marine Geodesy》2013,36(3-4):399-421
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

19.
The altimeter radar backscatter cross-section is known to be related to the ocean surface wave mean square slope statistics, linked to the mean surface acceleration variance according to the surface wave dispersion relationship. Since altimeter measurements also provide significant wave height estimates, the precedent reasoning was used to derive empirical altimeter wave period models by combining both significant wave height and radar backscatter cross-section measurements. This article follows such attempts to propose new algorithms to derive an altimeter mean wave period parameter using neural networks method. Two versions depending on the required inputs are presented. The first one makes use of Ku-band measurements only as done in previous studies, and the second one exploits the dual-frequency capability of modern altimeters to better account for local environmental conditions. Comparison with in situ measurements show high correlations which give confidence in the derived altimeter wave period parameter. It is further shown that improved mean wave characteristics can be obtained at global and local scales by using an objective interpolation scheme to handle relatively coarse altimeter sampling and that TOPEX/Poseidon and Jason-1 altimeters can be merged to provide altimeter mean wave period fields with a better resolution. Finally, altimeter mean wave period estimates are compared with the WaveWatch-III numerical wave model to illustrate their usefulness for wave models tuning and validation.  相似文献   

20.
The altimeter radar backscatter cross-section is known to be related to the ocean surface wave mean square slope statistics, linked to the mean surface acceleration variance according to the surface wave dispersion relationship. Since altimeter measurements also provide significant wave height estimates, the precedent reasoning was used to derive empirical altimeter wave period models by combining both significant wave height and radar backscatter cross-section measurements. This article follows such attempts to propose new algorithms to derive an altimeter mean wave period parameter using neural networks method. Two versions depending on the required inputs are presented. The first one makes use of Ku-band measurements only as done in previous studies, and the second one exploits the dual-frequency capability of modern altimeters to better account for local environmental conditions. Comparison with in situ measurements show high correlations which give confidence in the derived altimeter wave period parameter. It is further shown that improved mean wave characteristics can be obtained at global and local scales by using an objective interpolation scheme to handle relatively coarse altimeter sampling and that TOPEX/Poseidon and Jason-1 altimeters can be merged to provide altimeter mean wave period fields with a better resolution. Finally, altimeter mean wave period estimates are compared with the WaveWatch-III numerical wave model to illustrate their usefulness for wave models tuning and validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号