首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Local Ocean Tide Model, has been produced for the Exclusive Economic Zone (EEZ) of Malaysia, which incorporates some of the latest TOPEX/POSEIDON data for the years 1992 to 1998. Local tide gauge data are used as a comparison, along with another leading Global Ocean Tide Model, Ori96. The leading diurnal and semidiurnal constituents M2, S2, N2, K1, O1, P1 and Q1 are reproduced using TOPEX/POSEIDON Sea Surface Heights (SSH) in a response analysis type least squares derivation following Munk and Cartwright (1966).  相似文献   

2.
All major ocean tide constituents are aliased into signals with periods less than 90 days from TOPEX/POSEIDON altimetry, except the K1 constituent. The aliased K1 has a period of 173 days. Consequently, it might be confounded with height variations caused by the semiannual cycle having a period of 183 days.The correlation between K1 and the semiannual signal has been investigated both locally and globally using combinations of T/P, ERS-1 and GEOSAT observations. Subsequently, two empirical methods have been investigated to improve the mapping of K1 from multiple satellites.At high latitudes, where the presence of crossing tracks cannot separate K1 from the semiannual signal from TOPEX/POSEIDON, the importance of including ERS-1 and GEOSAT observations was demonstrated. A comparison with 29 pelagic and coastal tide gauges in the Southern Ocean south of 50°S gave 5.59 (M2), 2.27 (S2) and 5.04 (K1) cm RMS agreement for FES95.1 ocean tide model. The same comparison for the best empirical estimated constituents based on TOPEX/POSEIDON + ERS-1 + GEOSAT gave 4.32, 2.21, and 4.29 cm for M2, S2 and K1, respectively.  相似文献   

3.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

4.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as - 0.3 m, and surface wind speed of - 1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ - 1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

5.
A global ocean tide model (NAO.99b model) representing major 16 constituents with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model. The new solution is characterized by reduced errors in shallow waters compared to the other two models recently developed; CSR4.0 model (improved version of Eanes and Bettadpur, 1994) and GOT99.2b model (Ray, 1999), which are demonstrated in comparison with tide gauge data and collinear residual reduction test. This property mainly benefits from fine-scale along-track tidal analysis of TOPEX/POSEIDON data. A high-resolution (1/12°) regional ocean tide model around Japan (NAO.99Jb model) by assimilating both TOPEX/POSEIDON data and 219 coastal tide gauge data is also developed. A comparison with 80 independent coastal tide gauge data shows the better performance of NAO.99Jb model in the coastal region compared with the other global models. Tidal dissipation around Japan has been investigated for M2 and K1 constituents by using NAO.99Jb model. The result suggests that the tidal energy is mainly dissipated by bottom friction in localized area in shallow seas; the M2 ocean tidal energy is mainly dissipated in the Yellow Sea and the East China Sea at the mean rate of 155 GW, while the K1 energy is mainly dissipated in the Sea of Okhotsk at the mean rate of 89 GW. TOPEX/POSEIDON data, however, detects broadly distributed surface manifestation of M2 internal tide, which observationally suggests that the tidal energy is also dissipated by the energy conversion into baroclinic tide.  相似文献   

6.
利用JASON-1和TOPEX/POSEIDON卫星高度计在相互校正阶段的观测资料,对两者在中国海和西北太平洋测得的海面风速、有效波高、后向散射截面、海平面高度等参数进行一致性分析;利用j,v模型及主要分潮的调和常数,对中国陆架浅海的JASON-1海平面高度数据进行浅海潮汐修正,使用验潮站月平均水位资料对修正结果加以印证。结果显示,2颗高度计观测的海洋环境参数具有强相关性,JASON-1具备了完成延续TOPEX/POSEIDON数据集这一使命的条件。但是,2套系统对于同一海洋环境参数的观测还是存在不能忽略的差异,对这种差异进行了分析,并给出了修正模型。所使用的浅海潮汐修正方法有效地抑制了中国陆架浅海潮波对海平面高度反演的影响,所使用浅海水域的5个验潮站月平均水位资料与JASON-1高度计经过浅海潮汐修正后的海平面高度的相关系数为0.738,标准偏差为0.096m。通过进一步融合JASON-1和TOPEX/POSEIDON在并行飞行期间的海平面高度数据并与验潮站资料比较显示,两者的相关系数提高到0.83,标准偏差为0.067m。  相似文献   

7.
《Marine Geodesy》2013,36(3-4):355-366
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

8.
Jason, the successor to the TOPEX/POSEIDON (T/P) mission, has been designed to continue seamlessly the decade-long altimetric sea level record initiated by T/P. Intersatellite calibration has determined the relative bias to an accuracy of 1.6 mm rms. Tide gauge calibration of the T/P record during its original mission shows a drift of -0.1 ± 0.4 mm/year. The tide gauge calibration of 20 months of nominal Jason data indicates a drift of -5.7 ± 1.0 mm/year, which may be attributable to errors in the orbit ephemeris and the Jason Microwave Radiometer. The analysis of T/P and Jason altimeter data over the past decade has resulted in a determination of global mean sea level change of +2.8 ± 0.4 mm/year.  相似文献   

9.
印度尼西亚海域潮波的数值研究   总被引:1,自引:1,他引:0  
基于ROMS模式构建了模拟区域为(15.52°S-7.13°N,110.39°~134.15°E)水平分辨率为2′的潮波数值模式,分别模拟了印尼海域M2、S2、K1、O1四个主要分潮。模拟结果与29个卫星高度计交叠点上的调和常数进行比较,符合较好。M2分潮的振幅均方根差为3.4cm,迟角均方根差为5.9°;S2分潮的振幅均方根差为1.7cm,迟角均方根差为6.3°;K1分潮振幅均方根差为1.1cm,迟角均方根差为5.8°;O1分潮振幅均方根差为1.2cm,迟角均方根差为4.4°。M2、S2、K1、O1分潮向量均方根差分别为3.8cm、2.4cm、1.9cm和1.3cm,模拟结果的相对偏差在10%左右。根据计算结果分析了印尼海域的潮汐特征及潮能传播规律,结果显示:爪哇海以外的印尼海域主要为不规则半日潮区;全日潮潮能主要由太平洋传入印尼海域,而半日潮潮能则是从印度洋传入印尼海域。  相似文献   

10.
This article describes an "absolute" calibration of TOPEX/POSEIDON (T/P) altimeter bias using UK tide gauges equipped with Global Positioning System (GPS) receivers. The method is an extension of earlier work using the Newhaven tide gauge in the English Channel. However, the present analysis extends the research to a number of gauges around the UK and incorporates several improvements. The time-averaged TOPEX and POSEIDON biases are obtained with a precision of approximately 2 and 3 cm, respectively. The research complements work on bias determination by other groups in the T/P Science Working Team and can, in principle, be applied at other locations for which precise, local geoid-differences are available. The relatively sparse POSEIDON data set has been used as a test of our ability to perform an absolute calibration of upcoming Jason-1 altimetry as soon as possible after launch.  相似文献   

11.
Tidal Correction of Altimetric Data in the Japan Sea   总被引:2,自引:0,他引:2  
Satellite altimetric data have been very useful in the study of variation in the eddy field of the ocean. In order to investigate the variation in the eddy field, we have to remove tidal signals from altimetric data. However, global tidal models do not have sufficient accuracy in marginal seas such as the Japan Sea. In this study, we carried out harmonic analysis of temporal fluctuations of sea surface height data in the Japan Sea measured by TOPEX/POSEIDON. We could eliminate the tidal signals from altimetric data of TOPEX/POSEIDON and also from ERS-2 altimetric data with use of the harmonic constants derived from TOPEX/POSEIDON and tide gauge data along the coast. We draw co-tidal and co-range charts in the Japan Sea using the result of the harmonic analysis of TOPEX/POSEIDON altimetric data and tide gauge data along the coast. The results obtained turn out to be very useful for the tidal correction of altimetric data from satellite in the Japan Sea.  相似文献   

12.
This article describes an "absolute" calibration of TOPEX/POSEIDON (T/P) altimeter bias using UK tide gauges equipped with Global Positioning System (GPS) receivers. The method is an extension of earlier work using the Newhaven tide gauge in the English Channel. However, the present analysis extends the research to a number of gauges around the UK and incorporates several improvements. The time-averaged TOPEX and POSEIDON biases are obtained with a precision of approximately 2 and 3 cm, respectively. The research complements work on bias determination by other groups in the T/P Science Working Team and can, in principle, be applied at other locations for which precise, local geoid-differences are available. The relatively sparse POSEIDON data set has been used as a test of our ability to perform an absolute calibration of upcoming Jason-1 altimetry as soon as possible after launch.  相似文献   

13.
利用1992年10月22日-2001年7月17日扣除年循环的T/P和ERS-1/-2的卫星融合高度计资料,应用二维Radon变换方法,对太平洋和大西洋的洋盆东部、西部的大洋Rossby波的纬向传播速度进行了分析与对比,并将二者分别与经典线性理论值比较,得出洋盆西部的Rossby波普遍比洋盆东部传播要快;中纬度海域大洋Rossby波的传播速度观测值与理论值的比率小于前人结果;并且在热带及副热带海域,大洋Rossby波的传播速度的观测值要低于理论值的结论。  相似文献   

14.
基于内波动力学方程,提出利用TOPEX/Poseidon高度计资料提取内潮的方法.利用该方法,结合1992年10月到2002年6月共10a的TOPEX/Poseidon高度计资料和Levitus(1998)资料,给出了整个太平洋M2内潮能通量的分布,并与观测资料进行比测,两者符合较好.同时也发现沿整个太平洋边界M2内潮能通量向大洋内部输入的总功率为58.4GW,其中北太平洋对此贡献为30.2GW,南太平洋为28.2GW,可见南、北太平洋的贡献是基本相等的.东太平洋的总量为17.8GW,而西太平洋为40.6GW,两者差异较大(以160°W作为东、西太平洋分界线).  相似文献   

15.
基于卫星测高数据的潮汐分析是建立海潮模型的基本方法之一,主要包括调和分析方法和正交响应分析方法。利用上述两种方法对中国海和西太平洋海域的Topex/Poseidon(TP)、Jason-1(J1)和Jason-2(J2)卫星测高数据进行了潮汐分析,并将两种方法的计算结果进行对比研究。结果表明,观测时间序列的长度对潮汐信息提取的准确度有较大影响。满足分离任意两个分潮会合周期的卫星测高观测时间序列下,两种方法的准确度基本相同。短时段的数据受混叠效应影响明显,正交响应分析较调和分析准确度更高。  相似文献   

16.
基于FVCOM(Finite Volume Coast and Ocean Model)模型,建立北印度洋海域(31°~102°E,16°S~31°N)的M2和S2分潮潮波数值模式,研究北印度洋半日潮潮汐、潮流分布特征。对底摩擦系数进行数值试验,利用代价函数梯度下降法,得到分潮调和常数向量均方根偏差(RMSE)的变化曲线,逼近并确定最优的底摩擦系数。将采用该系数的模拟结果与TOPEX/Poseidon卫星高度计交叉点的调和常数数据、国际海道测量组织(IHO)及部分文献中的验潮站数据进行比较与验证,一致性较好。其中对比卫星数据的振幅偏差为2~4 cm、迟角偏差为7°~8°,与验潮站数据的振幅偏差为3~6 cm、迟角偏差为8°~9°。根据模拟结果,分析了北印度洋海域M2和S2分潮潮波传播特征和潮流椭圆的空间分布特征等。M2分潮潮波在阿拉伯海南部有1个无潮点,在波斯湾内有2个无潮点,最大振幅超过80 cm;潮流在西北印度洋和孟加拉湾中部大多为顺时针旋转,其余海域大多为逆时针旋转;流速在阿拉伯海东北部、安达曼海、波斯湾和孟加拉湾北部较大,最大流速为160 cm/s,其他海域较小。S2分潮的潮波传播特征、无潮点的位置和潮流椭圆的空间分布特征等都与M2分潮类似,但潮波振幅和潮流流速等都相对M2分潮较小。研究完善了北印度洋海域2个主要半日分潮M2和S2的整体特征。  相似文献   

17.
The difference-ratio relations are introduced to separate tidal constituents that are aliaseddue to the sampling interval and sampling span of the TOPEX/POSEIDON altimeter. It is found that some tidal constituents such as K_1 and SSA, though aliased at along track points, are not aliased at crossover points Ixrausf the data at crossover points are double those at along track points. So the harmonic analysis method can be employed directly for the analysis of time series at crossover points. Then the difference-ratio relations from crossover points are introduced to analyze the time series at along track points. The TOPEX/POSEIDON data in the Northwest Pacific are analyzed with this method. The results from this method agree well with tidal constants from tidal gauges.  相似文献   

18.
Recently, the TOPEX/POSEIDON Science Working Team has recommended the FES95.2.1 and CSR3.0 ocean tide models for reprocessing the TOPEX/POSEIDON Geophysical Data Records. Without doubt, the performance of these models, especially in the deep oceans, is excellent. However, from a comparison of these hydrodynamically consistent models with the purely empirical DW3.2 and DEOS96.1 models, it appears that FES95.2.1 and CSR3.0 are affected by basin boundary related errors which are caused by the basin-wise solution procedure of the FES ocean tide model series. In their turn, the empirical DW3.2 and DEOS96.1 models seem to suffer from significant errors in the Antarctic seas due to the seasonal growth and decay of Antarctic sea ice. Also, bathymetry-induced differences were found between the hydrodynamically consistent models and the empirical models. Concerning these differences, TOPEX/POSEIDON and ERS-1 crossover statistics unfortunately do not provide conclusive results on which models are in error.  相似文献   

19.
TOPEX/POSEIDON(T/P)卫星高度计数据信息中存在周期成分混淆问题.对其中的一类混淆引入差比关系方法对混淆的分潮进行分离.卫星轨道交叉点资料包括升轨和降轨资料,资料量比沿轨点资料多1倍,经分析发现:在已有为期6a多的观测资料时间序列中,在沿轨处混淆的分潮如K1和SSA在交叉点处不再混淆,可以直接分离.因此首先对交叉点资料进行调和分析.然后由交叉点的分析结果得到分潮间的差比关系,处理到相近的沿轨点处,从而得到沿轨点的调和常数.用引入差比关系方法,对西北太平洋海区6a多的T/P卫星高度计资料进行了潮汐分析,并与沿岸及岛屿验潮站资料进行了比较,所得结果较满意.  相似文献   

20.
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号