首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考虑地球扁率摄动影响的初轨计算方法   总被引:5,自引:0,他引:5  
刘林  王歆 《天文学报》2003,44(2):175-179
在二体问题意义下的短弧定轨,Laplace型方法是最主要最典型的一种初轨计算方法。若测角资料达到10^-4-10^-5精度(相当于2″—20″之间),那么要使定轨精度达到与其相应的程度,地球非球形引力位中的扁率项摄动应该考虑,在此前提下,同样可以采用相应的Laplace型定轨方法。即给出这种严格包含扁率摄动的初轨计算方法的原理和具体计算过程以及计算实例,除采用多资料定轨方法外,这种方法也是提高初轨计算精度的一种途径,它同样可用于多资料的情况,这种方法对于大扁率主天体(即中心天体)的卫星定轨将更有实用价值。  相似文献   

2.
刘林  张巍 《天文学报》2007,48(2):220-227
论述的短弧定轨,是指在无先验信息情况下又避开多变元迭代的初轨计算方法,它需要相应的动力学问题有一能反映短弧内达到一定精度的近似分析解.探测器进入月球引力作用范围后接近月球时可以处理成相对月球的受摄二体问题,而在地球附近,则可处理成相对地球的受摄二体问题,但在整个过渡段的力模型只能处理成一个受摄的限制性三体问题.而限制性三体问题无分析解,即使在月球引力作用范围外,对于大推力脉冲式的过渡方式,相对地球的变化椭圆轨道的偏心率很大(超过Laplace极限),在考虑月球引力摄动时亦无法构造摄动分析解.就此问题,考虑在地球非球形引力(只包含J2项)和月球引力共同作用下,构造了探测器飞抵月球过渡轨道段的时间幂级数解,在此基础上给出一种受摄二体问题意义下的初轨计算方法,经数值验证,定轨方法有效,可供地面测控系统参考.  相似文献   

3.
经典的初轨确定方法包括Laplace方法和Gauss方法以及它们的各种变化形式. 除这些经典方法之外, 基于当今光学观测数据的特点, 学者们也陆续提出了一些其他的初轨确定方法, 包括双r (目标距离观测者的距离)方法和可行域方法. 双r方法的一种实现方式是通过猜测某两个时刻(通常是定轨弧段的首、末时刻)目标离观测者的距离, 结合观测者在空间中的位置矢量, 即可求解相应的Lambert弧段作为目标轨道的初始猜测. 进一步, 以其他观测时刻的RMS (Root Mean Square)为优化变量可以改进初始猜测从而确定初轨. 可行域方法则是针对一组初始观测参数(包括赤经、赤纬及其变率), 根据一些初始假设将目标(离观测者的)距离及其变率约束在可行域内, 并通过三角划分逐步逼近的方式寻找到使观测RMS最小的猜测解. 针对一系列模拟观测数据以及实测数据, 将智能优化算法(粒子群算法)应用于这两种初轨方法, 并将结果与改进的Laplace算法的结果进行比较. 由于双r方法不仅可以用于短弧定轨还可用于长弧关联, 所以进一步给出了针对长弧段数据的关联结果.  相似文献   

4.
在分析了UVM2方法条件方程特点的基础上,将总体最小二乘法(TLS)引入轨道计算中,避免了原算法中对活力公式的线性化处理.仿真和实测计算结果表明,将TLS应用于UVM2是有效的.  相似文献   

5.
It is known that the dynamical orbit determination is the most common way to get the precise orbits of spacecraft. However, it is hard to build up the precise dynamical model of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B-spline approximation method based on the theory of function approximation is presented in this article. In order to verify the effectiveness of this method, simulative orbit determinations in the cases of LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that this method has a reliable accuracy and stable solution. The approach can be performed in both the conventional celestial coordinate system and the conventional terrestrial coordinate system. The spacecraft's position and velocity can be calculated directly with the B-spline approximation method, it needs not to integrate the dynamical equations, nor to calculate the state transfer matrix, thus the burden of calculations in the orbit determination is reduced substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can serve as a conventional algorithm in the spacecraft orbit determination.  相似文献   

6.
The traditional least square estimation (LSE) method for orbit determination will not be optimal if the error of observational data does not obey the Gaussian distribution. In order to solve this problem, the least p-norm (Lp) estimation method is presented in this paper to deal with the non-Gaussian distribution cases. We show that a suitable selection of parameter p may guarantee a reasonable orbit determination result. The character of Lp estimation is analyzed. It is shown that the traditional Lp estimation method is not a robust method. And a stable Lp estimating based on data depth weighting is put forward to deal with the model error and outlier. In the orbit determination process, the outlier of observational data and coarse model error can be quantitatively described by their weights. The farther is the data from the data center, the smaller is the value of data depth and the smaller is the weighted value accordingly. The result of the new Lp method is stabler than that of the traditional Lp estimation and the breakdown point could be up to 1/2. In addition, the orbit parameter is adaptively estimated by residual analysis and matrix estimation method, and the estimation efficiency is enhanced. Finally, by taking the Space-based Space Surveillance System as an example and performing simulation experiments, we show that if there are system error or abnormal value in the observational data or system error in satellite dynamical model and space-based observation platform, LSE will not be optimal even though the observational data obeys the Gaussian distribution, and the orbit determination precision by the self-adaptive robust Lp estimation method is much better than that by the traditional LSE method.  相似文献   

7.
From the point of view of the non-parametric statistics, a general estimation method of the accuracy and con?dence interval of preliminary orbit determination is proposed for the occasion without any other information but observational data. Based on the bootstrap method, the estimation relies only on the observational data and does not require the precise orbit determination as a reference, or the assumption of normal distribution of observational errors. Numerical experiments show that this method is very simple in implementa- tion, and may serve as an easy accuracy evaluation for the preliminary orbit determination and for the follow-up employments.  相似文献   

8.
We propose a new method for the determination of the preliminary orbit of a small celestial body using three pairs of its angular coordinates in three moments of time. The method is based on the use of the intermediate orbit we constructed earlier using three position vectors and the corresponding time moments. This intermediate orbit accounts for the main part of the perturbations of the motion of the body under study. We compare the results obtained by the classical Lagrange-Gauss method, Herrick-Gibbs method, generalized Herrick-Gibbs method, and the new method by the examples of the determination of the orbit of the small planet 1566 Icarus. The comparison showed that the new method is a highly efficient tool for the study of perturbed motion. It is especially efficient when applied to high-precision observational data covering short arcs of the orbit.  相似文献   

9.
The convergence of Lagrange series is studied on a part of the elliptical orbit for values of eccentricity exceeding the Laplace limit. The regions in the vicinity of the two apses of the orbit are identified in which the Lagrange series converge absolutely and uniformly for the values of the eccentricity greater than the Laplace limit. The obtained results are of practical interest for astronomy when studying motions of stellar bodies in orbits with high eccentricity. In particular, these series may be used to calculate the orbits of comets or asteroids with high eccentricity as they pass through the neighborhood of perihelion or to calculate the orbits of artificial satellites with high eccentricity “hanging” in the vicinity of apogee. In stellar dynamics, these series may be used in cases of close binary stars, many of which move in orbits with an eccentricity greater than the Laplace limit.  相似文献   

10.
A simple procedure is developed to determine orbital elements of an object orbiting in a central force field which contribute more than three independent celestial positions. By manipulation of formal three point Gauss method of orbit determination, an initial set of heliocentric state vectors r i and $\dot{\mathbf{r}}_{i}$ is calculated. Then using the fact that the object follows the path that keep the constants of motion unchanged, I derive conserved quantities by applying simple linear regression method on state vectors r i and $\dot{\mathbf{r}}_{i}$ . The best orbital plane is fixed by applying an iterative procedure which minimize the variation in magnitude of angular momentum of the orbit. Same procedure is used to fix shape and orientation of the orbit in the plane by minimizing variation in total energy and Laplace Runge Lenz vector. The method is tested using simulated data for a hypothetical planet rotating around the sun.  相似文献   

11.
连线干涉测量(Connected Element Interferometry, CEI)是一种全天时全天候的被动测角技术, 已用于空间目标的跟踪监视. 地球静止轨道(Geostationary Earth Orbit, GEO)卫星需要频繁机动以保持轨位或完成其他任务, 其机动后的快速轨道恢复能力对于监视预警极为重要. 针对基于CEI的GEO短弧定轨和预报, 分析了定轨算法的形亏和数亏, 在附加先验轨道约束的短弧定轨基础上, 提出了轨道半长轴初值的自适应优化方法. 利用亚太七号卫星的CEI仿真和实测数据进行了短弧定轨和预报, 实验结果表明, 采用优化后的半长轴初值, 30min短弧定轨和10min预报的卫星位置分量精度均优于4km, 能够满足非合作GEO目标机动后快速轨道恢复的需求.  相似文献   

12.
A modified Laplacian technique is described for initial orbit determination of asteroids from CCD observations and its applications for orbit determination of the main belt asteroids and near Earth asteroids. The proposed modification is based on a simultaneous improvement of both the orbital elements and the derivatives of spherical coordinates in frames of Laplace's method. It provides an orbit which represents the used observations with the residuals comparable with errors of these observations. The improved values of the derivatives might be used as ephemeris parameters for identification of newly discovered objects.  相似文献   

13.
The determination of the secular variations of the orbital elements of objects in N-body systems is based on the literal development of the perturbing function. The development makes use of the Laplace coefficients and their derivatives. In this paper a new method is described for the analytical computation of the derivatives of the Laplace coefficients. It is an explicit formula in the sense that it only contains the Laplace coefficients and the parameter on which the Laplace coefficients depend. The advantage of this method is that it is unnecessary to calculate all the derivatives up to the desired order. It is enough to calculate the Laplace coefficients. Easy coding is a further benefit of the method and it provides more accurate numerical results. The paper describes in detail the application of the method through an example and gives comparison with former methods.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
尹冬梅  赵有  李志刚 《天文学报》2007,48(2):248-255
同步卫星受到摄动力的影响,它的实际轨道有一点漂移.卫星需要不断的调轨调姿,以保证其正常运行.为了研究卫星在几小时,甚至更短的时间内的轨迹情况,采用短弧段定轨法.用动力学方法进行短弧定轨,分别研究1小时和15分钟定轨并进行比较,目的是为了在同步轨道卫星变轨后,能尽快地为卫星提供精密的预报轨道.此外,在系列短弧定轨后,得到精密轨道系列,为研究轨道变化的力学因素及研究短弧中卫星转发器时延变化规律等提供依据.  相似文献   

15.
针对光学测角资料给出了一种多点高斯定轨方法,该方法公式简单,容易推广使用。经实测计算表明,观测资料分布较好,该方法对于较大的偏心率和小偏心率轨道计算是可靠和有效的。  相似文献   

16.
Based on the Lambert equation and knowledge of space geometry a method of orbit determination is given using the sparse observational data provided by the space monitoring electronic fence device. Our simulated experiment of a large number of targets shows that the initial orbit determined by this method can be improved and can converge to a final accuracy better than 100 m, so proving that the method can be applied to the orbit determination of an overwhelming majority of space targets with the observed data of the electronic fence. Finally, the effect of the latitude of the observing station on the application of the method is discussed.  相似文献   

17.
SGP4/SDP4模型精度分析   总被引:2,自引:0,他引:2  
本文基于最新发布的SGP4/SDP4(Simplified General Perturbation Version 4/Simplified Deep-space Perturbation Version 4)模型设计了一套定轨方案,从空间目标库中挑选出不同类型和轨道参数的1120个目标进行计算,定量给出了SGP4/SDP4模型处理不同类型空间目标的定轨预报精度.结果表明:近地目标定轨精度为百米量级;半同步和同步轨道定轨精度平均为0.7和1.9km.椭圆轨道目标的定轨精度与偏心率有关,除少数e>0.8的椭圆轨道目标,绝大多数椭圆轨道目标定轨误差均小于10km.用SGP4/SDP4模型对近地目标预报3天,半同步轨道预报30天,同步轨道预报15天,椭圆轨道预报1天,预报误差一般不超过40km.  相似文献   

18.
It is an objective fact that there exists error in the satellite dynamic model and it will be transferred to satellite orbit determination algorithm, forming a part of the connotative model error. Mixed with the systematic error and random error of the measurements, they form the unitive model error and badly restrict the precision of the orbit determination. We deduce in detail the equations of orbit improvement for a system with dynamic model error, construct the parametric model for the explicit part of the model and nonparametric model for the error that can not be explicitly described. We also construct the partially linear orbit determination model, estimate and fit the model error using a two-stage estimation and a kernel function estimation, and finally make the corresponding compensation in the orbit determination. Beginning from the data depth theory, a data depth weight kernel estimator for model error is proposed for the sake of promoting the steadiness of model error estimation. Simulation experiments of SBSS are performed. The results show clearly that the model error is one of the most important effects that will influence the precision of the orbit determination. The kernel function method can effectively estimate the model error, with the window width as a major restrict parameter. A data depth-weight-kernel estimation, however, can improve largely the robustness of the kernel function and therefore improve the precision of orbit determination.  相似文献   

19.
A method of realtime autonomous orbit determination for earth satellites using the extended Kalman filtering is proposed. The observed quantities are: the satellite-sun direction vector measured by a sun sensor, the satellite-earth and satellite-moon direction vectors measured by an ultraviolet sensor, and the geocentric distance measured by a radar altimeter. At the same time the satellite attitude to the earth is also determined. Results of our simulation of the autonomous orbit determination show that the precision of the orbit determinations is better than 200 m. The effects of the sampling period, orbital inclination, orbital eccentricity and orbital altitude on the precision of orbit determination are analyzed and compared, and certain principles helpful for improving the precision of orbit determination are suggested.  相似文献   

20.
It is difficult to use the single-station satellite laser ranging (SLR) data for orbit determination, due to the singular geometrical distribution of the observations. The single-station data produced by performing the diffuse- reflection SLR on the earth-orbiting space debris are therefore ineffective for orbit improvement. To solve this problem, we propose an orbit determination method by using single-station SLR data in aid of the two-line element set (TLE). For verifying its feasibility, this method is implemented and applied to the orbit determination of the satellite Ajisai, using the single-station SLR data of five passes in one day and the corresponding TLE. And on this basis, the five-day orbit prediction is generated, the result indicates that the errors of predicted positions are less than 40 m. In addition, the potential application of this method in the orbit improvement of space debris is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号