首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use a non-singular potential that appears in the literature under the influence of which the Poynting-Robertson effect is studied. For that, dust particles originating within the asteroid belt are used, in circular and elliptic orbits, and expressions for the semimajor axis as a function of time are obtained. The derived expressions are written in terms of the two basic dust particle parameters, namely the density and the diameter. In both cases, we obtain expressions for the time that the dust particles take to reach the orbit of Earth under the action of the non-singular potential and solar radiation. For the non-singular potential, dust particles of diameter 10−3 m in circular and elliptical orbits require times of the order of 4.058×107 and 2.823×107 y to reach the orbit of the Earth respectively. Finally, the derived expressions and numerical results are compared with those of the Newtonian potential.  相似文献   

2.
We construct and compare two different self-consistent N-body equilibrium configurations of galactic models. The two systems have their origin in cosmological initial conditions selected so that the radial orbit instability appears in one model and gives an E5 type elliptical galaxy, but not in the other that gives an E1 type. We examine their phase spaces using uniformly distributed orbits of test particles in the resulting potential and compare with the distribution of the orbits of the real particles in the two systems. The main types of orbits in both cases are box, tube and chaotic orbits. One main conclusion is that the orbits of the test particles in the 3-dimensional potential are foliated in a way quite close to the foliation of invariant tori in a 2-dimensional potential. The real particles describe orbits having similar foliation. However, their distribution is far from being uniform. The difference between the two models of equilibrium is realized mainly by different balances of the populations of real particles in box and tube orbits.  相似文献   

3.
The multi-sun-synchronous orbits allow cycles of observation of the same area in which solar illumination repetitively changes according to the value of the orbit elements and returns to the initial condition after a temporal interval multiple of the repetition of observation. This paper generalizes the concept of multi-sun-synchronous orbits, whose classical sun-synchronous orbits represent particular solutions, taking into consideration the elliptical case. The feasibility of using this typology of orbits, referred to as elliptical periodic multi-sun-synchronous orbits, has been investigated for the exploration of Mars and particular solutions have been selected. Such solutions considerably reduce the manoeuvre of velocity variation at the end of the interplanetary transfer with respect to the case of a target circular orbit around Mars. They are based on the use of quasi-critical inclinations in order to minimize the apsidal line motion and thus reduce orbit maintenance costs. Moreover, in the case of high eccentricities, the argument of pericentre may be set in order to obtain, around the apocentre, a condition of quasi-synchronism with the planet (the footprint of the probe on the surface presents a small shift with respect to a fixed point on the Martian surface). The low altitude of pericentre allows observation of the planet at a higher spatial resolution, while the orbit arc around the apocentre may be used to observe Mars with a wide spatial coverage in quasi-stationary conditions. This latter characteristic is useful for analysing atmospheric and meteorological phenomena and it allows for most of the orbital period a link between a rover on the surface of Mars and a probe orbiting around the planet.  相似文献   

4.
We consider a Yukawa-type gravitational potential combined with the Poynting-Robertson effect. Dust particles originating within the asteroid belt and moving on circular and elliptic trajectories are studied and expressions for the time rate of change of their orbital radii and semimajor axes, respectively, are obtained. These expressions are written in terms of basic particle parameters, namely their density and diameter. Then, they are applied to produce expressions for the time required by the dust particles to reach the orbit of Earth. For the Yukawa gravitational potential, dust particles of diameter \(10^{ - 3}\) m in circular orbits require times of the order of \(8.557 \times 10^{6}\) yr and for elliptic orbits of eccentricities \(e =0.1, 0.5\) require times of \(9.396 \times 10^{6}\) and \(2.129 \times 10^{6}\) yr respectively to reach Earth’s orbit. Finally, various cases of the Yukawa potential are studied and the corresponding particle times to reach Earth’s are derived per case along with numerical results for circular and various elliptical orbits.  相似文献   

5.
The bifurcations of orbit-averaged dynamics are studied in a class of razor-thin discs with central black holes. The model used here consists of a perturbed harmonic oscillator Hamiltonian augmented with a GM r potential. Through a sequence of conformal and canonical transformations, we reduce the phase-space flows of the system to a set of non-linear differential equations on a sphere. Based on the critical points of the averaged system, we classify orbit families and reveal the existence of six types of periodic motions: circular , long - and short-axis elliptical , long - and short-axis radial and inclined radial orbits. Long-axis elliptical orbits and their surrounding tubes have significant features: whilst they keep stars away from the centre, they elongate in the same direction as the density profile. These properties are helpful in the construction of self-consistent equilibria.  相似文献   

6.
在不同的轨道预报场景中, 使用的动力学模型也不同. 例如, 在低轨空间碎片的预报中大气阻力是十分重要的摄动力, 而到了中高轨, 大气阻力就可以忽略不计. 如何为不同轨道类型的空间碎片选择最优(满足精度要求下的最简)动力学模型还没有系统、详尽的研究. 将对不同精度需求、不同轨道类型下的大批量轨道进行预报, 通过比较不同动力学模型下的预报结果, 给出各种预报场景的最优动力学模型建议. 可以为不同轨道类型的空间碎片在轨道预报时选择基准动力学模型提供参考或标准.  相似文献   

7.
One of the possible bar formation mechanisms in the disks of galaxies was proposed by Lynden-Bell (1979). The presumed amplification of a weak seed oval stellar surface density perturbation in the central regions of the galaxy through the alignment of the major axes of precessing elliptical orbits underlies it. According to his qualitative reasoning, the orbits are aligned along the perturbation if the precession rate diminishes with decreasing angular momentum at a constant adiabatic invariant. Using a rigorous approach based on finding the system’s stable stationary points, we show that this condition is not the only one that determines the orbit alignment orientation. The orbit precession direction in the unperturbed potential and the rate of decrease of the bar potential amplitude with radius also turn out to be important. In some cases, the latter can even be more important.  相似文献   

8.
The convergence of Lagrange series is studied on a part of the elliptical orbit for values of eccentricity exceeding the Laplace limit. The regions in the vicinity of the two apses of the orbit are identified in which the Lagrange series converge absolutely and uniformly for the values of the eccentricity greater than the Laplace limit. The obtained results are of practical interest for astronomy when studying motions of stellar bodies in orbits with high eccentricity. In particular, these series may be used to calculate the orbits of comets or asteroids with high eccentricity as they pass through the neighborhood of perihelion or to calculate the orbits of artificial satellites with high eccentricity “hanging” in the vicinity of apogee. In stellar dynamics, these series may be used in cases of close binary stars, many of which move in orbits with an eccentricity greater than the Laplace limit.  相似文献   

9.
Trajectories of satellites under the influences of earth oblateness and air drag are derived by the asymptotic method in nonlinear mechanics. Based on the assumptions: (1) the dominant oblateness factor of the earth is the second harmonic (J 2), (2) a non-rotating, spherically symmetric atmosphere and an exponential distribution of atmospheric density, (3) original elliptical orbits being of small eccentricity, closed-form solutions for the improved first order approximation are obtained. After finding the osculating orbital elements of the resulting trajectories, we expose the behavior of osculating orbits at various inclinations.  相似文献   

10.
The satellites TC-1 and TC-2 are the two Chinese satellites with great elliptical orbits which are still in orbit around the earth at present. Since the launch the orbits of the two satellites have continuously evolved, which has a certain effect on the orbit determination and prediction precision. The regularities of the orbital evolution of the two sounding satellites are qualitatively and quantitatively analyzed. Under the current tracking mode the corresponding prediction precision of orbit determination is analyzed based on the different stages of the orbital evolution, thereby providing the basis for the adjustment of planning mode by the satellite application departments and the guarantee of normal satellite payload. Finally, the orbital lifetimes of the two satellites are predicted through the trend of the orbital evolution.  相似文献   

11.
Based on the latest release of the SGP4/SDP4 (Simplified General Perturbation Version 4/ Simplified Deep-space Perturbation Version 4) model, in this paper we have designed an orbit determination program. Through calculations for the 1120 objects with various types and orbital elements selected from the space objects database, we have obtained the accuracies of the orbit determination prediction dealt with various types of space objects by the SGP4/SDP4 model. The results show that the accuracies of the near-earth objects are in the order of magnitude of 100 meters; the averages of the orbit determination accuracies of the semi-synchronous and geosynchronous orbits are, respectively, 0.7 and 1.9 km. The orbit determination accuracies of the elliptical orbit objects are related to their eccentricities. Except for few elliptical orbit objects with e > 0.8, the orbit determination errors of the vast majority of the elliptical orbit objects are all less than 10 km. By using the SGP4/SDP4 model to make 3 days predictions for near-earth objects, 30 days for semi-synchronous orbit objects, 15 days for geosynchronous orbit objects and 1 day for elliptical orbit objects, the errors of prediction generally don’t exceed 40 km.  相似文献   

12.
Giacomo Giampieri 《Icarus》2004,167(1):228-230
A planetary body moving on an eccentric orbit around the primary is subject to a periodic perturbing potential, affecting its internal mass distribution. In a previous paper (Rappaport et al., 1997, Icarus 126, 313), we have calculated the periodic modulation of the gravity coefficients of degree 2, for a body on a synchronous orbit. Here, the previous analysis is extended by considering also non-synchronous orbits, and by properly accounting for the apparent motion of the primary due to the non uniform motion along the elliptical orbit. The cases of Titan and Mercury are briefly discussed.  相似文献   

13.
Sedimentation of particles in a fluid has long been used to characterize particle size distribution. Stokes’ law is used to determine an unknown distribution of spherical particle sizes by measuring the time required for the particles to settle a known distance in a fluid of known viscosity and density. In this paper, we study the effects of gravity on sedimentation by examining the resulting particle concentration distributed in an equilibrium profile of concentration C m,n above the bottom of a container. This is for an experiment on the surface of the Earth and therefore the acceleration of gravity had been corrected for the oblateness of the Earth and its rotation. Next, at the orbital altitude of the spacecraft in orbit around Earth the acceleration due to the central field is corrected for the oblateness of the Earth. Our results show that for experiments taking place in circular or elliptical orbits of various inclinations around the Earth the concentration ratio C m,n /C m,ave , the inclination seems to be the most ineffective in affecting the concentration among all the orbital elements. For orbital experiment that use particles of diameter d p =0.001 μm the concentration ratios for circular and slightly elliptical orbits in the range e=0–0.1 exhibit a 0.009 % difference. The concentration ratio increases with the increase of eccentricity, which increases more for particles of larger diameters. Finally, for particles of the same diameter concentration ratios between Earth and Mars surface experiments are related in the following way .  相似文献   

14.
The objective of the present paper is to derive a set of analytical equations that describe a swing-by maneuver realized in a system of primaries that are in elliptical orbits. The goal is to calculate the variations of energy, velocity and angular momentum as a function of the usual basic parameters that describe the swing-by maneuver, as done before for the case of circular orbits. In elliptical orbits the velocity of the secondary body is no longer constant, as in the circular case, but it varies with the position of the secondary body in its orbit. As a consequence, the variations of energy, velocity and angular momentum become functions of the magnitude and the angle between the velocity vector of the secondary body and the line connecting the primaries. The “patched-conics” approach is used to obtain these equations. The configurations that result in maximum gains and losses of energy for the spacecraft are shown next, and a comparison between the results obtained using the analytical equations and numerical simulations are made to validate the method developed here.  相似文献   

15.
Observed W-shaped occultation signatures of certain narrow ringlets in the ring systems of Saturn and Uranus imply a concentration of material near their inner and outer radial edges. A model is proposed where edge bunching is a natural consequence of particles in entwined elliptical orbits, with the same particles alternately defining both edges. While such orbits cross over in radius, collisions would not occur if they have small inclinations, the same fixed argument of periapse ω, and other parameters whereby the particles would “fly in formation” along compressed helical paths relative to the core of the ringlet, which is taken to be a circle in the equatorial plane. For this model to match the observed ring thickness and ringlet widths, orbit inclinations i must be much smaller than their eccentricities e, which themselves would be very small compared to unity. Thus, the meridional cross section of the resultant torus would be a very thin ellipse of thickness proportional to i∣cos ω∣, tilted slightly from the equatorial plane by (i/e)∣sin ω∣ radians. However, gravitational perturbations due to the oblateness of the planet would cause a secular change in ω so that this cross section would collapse periodically to a tilted line, and collisions would then occur. If this collapse could be prevented, the torus could remain in a continuous state of nearly zero viscosity. Stabilization against collapse appears possible due to several remarkable characteristics that are added to the model when the particles are electrically charged. First, because of inherent features of the torus structure, a weak electric force could counter the key effect of the vastly larger oblateness force. Second, because the electric perturbation also affects i, there is a large region in ω,i space where stability against cross-sectional collapse is automatic. For this region, the thickness of the elliptical cross section would expand and contract in concert with the way that the major axis of the ellipse rocks back and forth relative to the equatorial plane. The period of these “rocking and breathing” changes would be from 1 to 3 weeks for a torus in the C ring of Saturn, for example. The electric effects could change considerably without driving the parameters of the torus from the stable domain where cross-sectional collapse does not occur. While specialized and in several important ways still incomplete, the proposed model could account for the W-shaped patterns and explain how very dense ringlets might endure without energy loss due to collisions. It also appears to be capable of explaining the observed sorting of particles by size within a ringlet. Several characteristics of the model suggest definitive tests of its applicability, including its prediction that a nonsymmetrical W-shaped occultation signature could be reversed a half orbit away, and that grazing solar illumination of tilted ringlets might cast shadows that change with time in a prescribed way.  相似文献   

16.
We study the dynamics of extended shells of relatively low-mass particles around and inside the orbit of two heavy centres of gravity (a binary) by computer simulations. The binary components are surrounded byN = 16 000 small mass particles in uniform random distribution on few spherical envelopes with different radii expanding with respective velocities. Some shells are inside the orbit of binary.We apply this model to binary galaxy systems with baryonic dark matter, e.g., massive black holes. In principle, we can apply this model to different kinds of objects (from binary star systems until superclusters of galaxies).It is shown that the shell expands homologously with a decreasing velocity and then, falls back into the binary system forming zones of compressed matter. At some moment of time there could be a collapse of these particles on to the heavier component of the binary. Further in time, some part of particles which were outside the binary orbit escape from the system. Other particles which were initially inside of the orbit are captured by binary components.We consider a number of different models with different initial parameters. For models with smaller radii of shells, about one-half of the particles escape from systems; whereas for larger values the shell disrupts as a whole. Escaping particles form collimated flows in planes of orbits of binaries. Positions of flows and directions of motion depend on positions of heavier components of binaries at the moment of a closest approach of particles and on ratios of masses of binary components.We show that during evolution of our models different kinds of structures of systems often are very similar to the observed structures of galaxies: spiral and elliptical galaxies, interacting galaxies, different kinds of flows and jets. Totally systems are expanding - after 40 periods of rotation of the binary the system expands by 300 times.  相似文献   

17.
Results of numerical simulations of 'local-optimal' (or 'instantaneously optimal') trajectories of a space probe with a flat solar sail which moves from the circular Earth orbit to near-Sun regions are presented. We examine planar (ecliptic) solar sail transfer with gravity-assist flybys of Earth, Venus and Mercury. Several complex control modes of the sail tilt orientation angle for near-Sun orbits and for some 'falling onto the Sun' trajectories are investigated. The numerical simulations are used to examine the flight duration of some sail missions and to investigate the evolution of osculating elliptical orbits.  相似文献   

18.
The shape of a galaxy is constrained both by mechanisms of formation (dissipational versus dissipationless) and by the available orbit families (the shape and amount of regular and stochastic orbits). It is shown that, despite the often very flattened shapes of banana and fish orbits, these boxlet orbits generally do not fit a triaxial galaxy in detail because, similar to loop orbits, they spend too little time at the major axis of the model density distribution. This constraint from the shape of fish orbits is relaxed at (large) radii where the density profile of a galaxy is steep.  相似文献   

19.
This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill–Clohessy–Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The \(\Delta v\) requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.  相似文献   

20.
In this paper three results on the linearized mapping associated with the plane three body problem near a periodic orbit are established. It is first shown that linear stability of such an orbit is independent of initial position on the orbit and of coordinate system. Second, the relation of Hénon connecting the rates of change of rotation angle and period on an isoenergetic family of periodic orbits is proved, together with a similar relation for families of orbits closing exactly in a rotating coordinate system. Finally, a condition for a critical orbit is given which is applicable to any family of periodic orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号