首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fission track analyses of detrital components in the Permo-Triassic Karoo Basin (South Africa), highlight the potency of tectono-magmatically driven fluids to penetrate wide and far in foreland basins. The data, together with the data published on Karoo tectonics and magmatism, support a model which requires that fluids were driven north out of the Cape-Karoo orogen during the Cape Orogeny (270–200 Ma). Later fluids were redistributed and aquifers rejuvenated during (and after) the final break-up of Gondwana (<200 Ma). The fission track data indicate that thermal annealing of fission tracks in zircon occurs non-uniformly between individual zircon grains. This model is in agreement with recent models applied to deformed foreland basins and implicates tectonic fluids in U metallogenesis.  相似文献   

2.
Results of palaeomagnetic investigations of the Lower Cretaceous teschenitic rocks in the Silesian unit of the Outer Western Carpathians in Poland bring evidence for pre-folding magnetization of these rocks. The mixed-polarity component reveals inclinations, between 56° and 69°, which might be either of Cretaceous or Tertiary age. Apparently positive results of fold and contact tests in some localities and presence of pyrhotite in the contact aureole suggest that magnetization is primary, although a Neogene or earlier remagnetization cannot be totally excluded since inclination-only test between localities gives 'syn-folding' results. Higher palaeoinclinations (66°–69°) correlate with a younger variety of teschenitic rocks dated for 122–120 Ma, while lower inclinations (56°–60°) with an older variety (138–133 Ma). This would support relatively high palaeolatitudes for the southern margin of the Eurasian plate in the late part of the Early Cretaceous and relatively quick northward drift of the plate in this epoch, together with the Silesian basin at its southern margin. Declinations are similar to the Cretaceous–Tertiary palaeodeclinations of stable Europe in the eastern part of the studied area but rotated ca. 14°–70° counter-clockwise in the western part. This indicates, together with older results from Czech and Slovakian sectors of the Silesian unit, a change in the rotation pattern from counter-clockwise to clockwise at the meridian of 19°E. The rotations took place before the final collision of the Outer Carpathians nappe stack with the European foreland.  相似文献   

3.
The syntectonic continental conglomerates of the South‐Central Pyrenees record the late stages of thin‐skinned transport of the South‐Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ‐derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well‐defined periods of rapid cooling in the hinterland at ca. 50–40 and ca. 30–25 Ma, with another poorly defined cooling episode at ca. 70–60 Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re‐excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen.  相似文献   

4.
The effectiveness of detrital zircon thermochronology as a means of linking hinterland evolution and continental basin sedimentation studies is assessed by using Mesozoic continental sediments from the poorly understood Khorat Plateau Basin in eastern Thailand. New uranium lead (U‐Pb) and fission‐track (FT) zircon data from the Phu Kradung Formation identify age modes at 141 ± 17 and 210 ± 24 Ma (FT) and 2456 ± 4, 2001 ± 4, 251 ± 3, and 168 ± 2 Ma (U‐Pb), which are closely similar to data from the overlying formations. The FT data record post‐metamorphic cooling, whereas the U‐Pb data record zircon growth events in the hinterland. Comparison is made between detrital zircon U‐Pb data from ancient and modern sources across Southeast Asia. The inherent stability of the zircon U‐Pb system means that 250 Myr of post‐orogenic sedimentary recycling fails to change the regional zircon U‐Pb age signature and this precludes use of the U‐Pb approach alone for providing unique provenance information. Although the U‐Pb zircon results are consistent with (but not uniquely diagnostic of) the Qinling Orogenic Belt as the original source terrane for the Khorat Plateau Basin sediments, the zircon FT cooling data are more useful as they provide the key temporal link between basin and hinterland. The youngest zircon FT modes from the Khorat sequence range between 114 ± 6 (Phra Wihan Formation) and 141 ± 17 Ma (Phu Kradung Formation) that correspond to a Late Jurassic/Early Cretaceous reactivation event, which affected the Qinling Belt and adjacent foreland basins. The mechanism for regional Early Cretaceous erosion is identified as Cretaceous collision between the Lhasa Block and Eurasia. Thus, the Khorat Plateau Basin sediments might have originated from a reactivation event that affected a mature hinterland and not an active orogenic belt as postulated in previous models.  相似文献   

5.
《Basin Research》2018,30(3):502-521
The Menderes Massif is a Tertiary metamorphic core complex tectonically exhumed in the late Oligocene–Miocene during coeval development of a series of E–W‐trending basins. This study analyses the source‐to‐sink evolution of the Gediz Graben and the exhumation pattern of the Central Menderes Massif at the footwall and hanging wall of the Gediz Detachment Fault. We use a comprehensive approach to detrital apatite fission track dating combining analysis of modern river sediments, analysis of fossil sedimentary successions and mineral fertility determinations. This approach allowed us to: (i) define the modern short‐term erosion pattern of the study area, (ii) unravel the long‐term exhumation history, (iii) identify major exhumation events recorded in the sedimentary basin fill and (iv) constrain the maximum depositional age of the sedimentary succession. Three main exhumation events are recorded in the analysed detrital samples: (i) a late Oligocene/early Miocene exhumation event involving the whole Menderes Massif; (ii) a late Miocene event involving the northern edge of the Central Menderes Massif; (iii) a Plio‐Quaternary more localized event involving only the western part of the southern margin of the basin (Salihli area) and bringing to the surface the Gediz Detachment and its intrusive footwall (Salihli granodiorite). The modern short‐term erosion pattern closely reflects this latter Plio‐Quaternary event. Single grain‐age distributions in the sedimentary basin fill highlight drainage pattern reorganizations in correspondence of the transition between different stratigraphic units, and allowed to better constrain the depositional age of the sedimentary units of the basin pointing to a possible onset of sedimentation in the basin during the middle Miocene.  相似文献   

6.
ABSTRACT Apatite fission track ages of 20 samples collected from turbidite successions deposited in foreland basins adjacent to the Northern Apennines range between ∼3 and ∼10 Ma. The youngest fission track ages are concentrated in a NW–SE elongated belt, which approximately runs through the centre of the study area, while gradually increasing ages are distributed towards the south-western and north-eastern borders. Integration of apatite fission track data and published vitrinite reflectance values indicate this region of the Apennines experienced continuous but variable exhumation starting from ∼14 Ma. The extent of exhumation and uplift range between 5 and 6 km at the south-western and north-eastern borders of the study area, and ∼7 km in the central part. Exhumation was driven mainly by erosion, with minor faulting in response to structural readjustment related to differential exhumation. Regional exhumation and erosion are interpreted as the result of isostatic rebound following crustal thickening in the lower part of the orogen.  相似文献   

7.
A high-resolution paleolimnological study from Lake Brazi, a small mountain lake in the Southern Carpathian Mountains, Romania, shows distinct diatom responses to late glacial and early Holocene climate change between ca. 15,750 and 10,000?cal?year BP. Loss-on-ignition, titanium, sulphur, phosphorus, biogenic silica content, and diatom assemblage composition were used as proxies for past environmental changes. Total epilimnetic phosphorus (TP) concentrations and lakewater pH were reconstructed quantitatively using diatom-TP and pH transfer functions. The most remarkable changes in the aquatic ecosystem were found at ca. 12,870 and 10,400?cal?year BP. Whereas the onset of the Younger Dryas (YD) climatic reversal was conspicuous in our record, the beginning of the Holocene was not well marked. Two diatom assemblage zones characterize the YD in Lake Brazi, suggesting a bipartite division of this climatic oscillation. The diatom responses to the YD cooling were (1) a shift from Staurosira venter to Stauroforma exiguiformis dominance; (2) a decrease in overall diatom diversity; (3) a decrease in lake productivity, inferred from DI-TP, organic matter, and biogenic silica content; and (4) a lowering of the DI-pH. Compositional change of the diatom assemblages suggested a sudden shift towards more acidic lake conditions at 12,870?cal?year BP, which is interpreted as a response to prolonged ice cover and thus shorter growing seasons and/or enhanced outwash of humic acids from the catchment. Taking into account the chironomid-based inference of only moderate July mean temperature decrease (<1?°C), together with the pollen-inferred regional opening of the forest cover and expansion of steppe-tundra, our data suggest that ecosystem changes in the Southern Carpathians during the YD were likely determined by strong seasonal changes.  相似文献   

8.
《Basin Research》2018,30(Z1):497-512
Shale of the Upper Cretaceous Slater River Formation extends across the Mackenzie Plain of the Canadian Northwest Territories and has potential as a regional source rock because of the high organic content and presence of both oil‐ and gas‐prone kerogen. An understanding of the thermal history experienced by the shale is required to predict any potential petroleum systems. Our study integrates multi‐kinetic apatite fission track (AFT) and apatite (U‐Th)/He (AHe) thermochronometers from a basal bentonite unit to understand the timing and magnitude of Late Cretaceous burial experienced by the Slater River Formation along the Imperial River. We use LA‐ICP‐MS and EPMA methods to assess the chemistry of apatite, and use these values to derive the AFT kinetic parameter rmr0. Our AFT dates and track lengths, respectively, range from 201.5 ± 36.9 Ma to 47.1 ± 12.3 Ma, and 16.8 to 10.2 μm, and single crystal AHe dates are between 57.9 ± 3.5 and 42.0 ± 2.5 Ma with effective uranium concentrations from 17 ppm to 36 ppm. The fission track data show no relationship with the kinetic parameter Dpar and fail the χ2‐test indicating that the data do not comprise a single statistically significant population. However, when plotted against their rmr0 value, the data are separated into two statistically significant kinetic populations with distinct track length distributions. Inverse thermal history modelling of both the multi‐kinetic AFT and AHe datasets, reveal that the Slater River Formation reached maximum burial temperatures of ~65–90 °C between the Turonian and Paleocene, indicating that the source rock matured to the early stages of hydrocarbon generation, at best. Ultimately, our data highlight the importance of kinetic parameter choice for AFT and AHe thermochronology, as slight variations in apatite chemistry may have significant implications on fission track and radiation damage annealing in apatite with protracted thermal histories through the uppermost crust.  相似文献   

9.
Summary. The Gubbio section, in the Umbrian Apennines, yielded a sequence of Upper Cretaceous polarity zones precisely corresponding to the sea-floor magnetic anomalies of that age; the Gubbio polarity zones have been dated with planktonic foraminifera. As a test of the validity of the Gubbio reversal sequence, we have studied the section at Moria, 16 km to the north. The polarity sequence at Moria closely agrees with the sequence at Gubbio; only the two thinnest polarity subzones were not found. Comparison of polarity zone thicknesses in the two sections gives an excellent correlation. Declinations in the upper part of the Moria section are somewhat erratic, suggesting the possibility of detachment surfaces and relative structural rotations at these levels. Remanent magnetic intensity varies in a cyclical pattern that is unmistakably the same in the Gubbio and Moria sections. The results from the Moria section provide strong confirmation of the validity of the magnetic polarity sequence established at Gubbio.  相似文献   

10.
Recent interest has focused on whether South Korea may have undergone variable tectonic rotations since the Cretaceous. In an effort to contribute to the answer to this question, we have completed a palaeomagnetic reconnaissance study of Early Cretaceous sedimentary and igneous rocks from the Kyongsang basin in southeast Korea. Stepwise thermal demagnetization isolated well-defined characteristic magnetization in all samples. The palaeomagnetic directions reveal patterns of increasing amounts of clockwise (CW) rotation with increasing age for Aptian rock units. Palaeomagnetic declinations indicate clockwise vertical-axis rotations of R = 34.3° ± 6.9° for the early Aptian rock unit, R = 24.9° ± 10.6° for the middle Aptian, and R = −0.9° ± 11.8° for the late Aptian relative to eastern Asia. The new Cretaceous palaeomagnetic data from this study are consistent with the hypothesis that Korea and other major parts of eastern Asia occupied the same relative positions in terms of palaeolatitudes in the Cretaceous. An analysis of and comparison with previously reported palaeomagnetic data corroborates this hypothesis and suggests that much of Korea may have been connected to the North China Block since the early Palaeozoic. A plausible cause of the rotation is the westward subduction of the Kula plate underneath the Asian continent, which is inferred to have occurred during the Cretaceous according to several geological and tectonic analyses.  相似文献   

11.
A high surface heat-flow anomaly on the northern Taranaki Peninsula in the Taranaki Basin (New Zealand) coincides spatially with Quaternary volcanic edifices, but the temporal aspects of heating of the sedimentary column associated with volcanism and any related plutonism have been unclear. A combined analysis of fission track age and vitrinite reflectance data, in particular comparing data from within the high heat-flow anomaly to calibration wells elsewhere in the Taranaki Basin, provides important new constraints. Within the high heat-flow region, apatite fission track (AFT) ages are older and vitrinite reflectance ( R o) values are lower than in samples from elsewhere in the basin that have undergone similar burial histories. Modelled AFT ages and R o values suggest gradual heating to within about 20  °C of maximum temperature followed by rapid heating of sedimentary strata in the last 1 Myr, perhaps as recently as the last 0.1 Myr. The inferred age of this heating event is younger than the age of the volcanic edifice on which it is centred, suggesting that volcanism precedes heating that may be related to plutonism under the northern peninsula. These results suggest that, if the heating is caused by intrusion, then the intrusion is probably in the upper crust.
  相似文献   

12.
《Basin Research》2018,30(5):895-925
Kilometre‐scale geobodies of diagenetic origin have been documented for the first time in a high‐resolution 3D seismic survey of the Upper Cretaceous chalks of the Danish Central Graben, North Sea Basin. Based on detailed geochemical, petrographic and petrophysical analyses, it is demonstrated that the geobodies are of an open‐system diagenetic origin caused by ascending basin fluids guided by faults and stratigraphic heterogeneities. Increased amounts of porosity‐occluding cementation, contact cement and/or high‐density/high‐velocity minerals caused an impedance contrast that can be mapped in seismic data, and represent a hitherto unrecognized, third type of heterogeneity in the chalk deposits in addition to the well‐known sedimentological and structural features. The distribution of the diagenetic geobodies is controlled by porosity/permeability contrasts of stratigraphic origin, such as hardgrounds associated with formation tops, and the feeder fault systems. One of these, the Top Campanian Unconformity at the top of the Gorm Formation, is particularly effective and created a basin‐wide barrier separating low‐porosity chalk below from high‐porosity chalk above (a Regional Porosity Marker, RPM). It is in particular in this upper high‐porosity unit (Tor and Ekofisk Formations) that the diagenetic geobodies occur, delineated by “Stratigraphy Cross‐cutting Reflectors” (SCRs) of which eight different types have been distinguished. The geobodies have been interpreted as the result of: (i) escaping pore fluids due to top seal failure, followed by local mechanical compaction of high‐porous chalks, paired with (ii) ascension of basinal diagenetic fluids along fault systems that locally triggered cementation of calcite and dolomite within the chalk, causing increased contact cements and/or reducing porosity. The migration pathway of the fluids is marked by the SCRs, which are the outlines of high‐density bodies of chalk nested in highly porous chalks. This study, thus, provides new insights into the 3D relationship between fault systems, fluid migration and diagenesis in chalks and has important applications for basin modelling and reservoir characterization.  相似文献   

13.
Abstract

The effects and influence of tectonic processes on the Anjarakandy, Thalassery, Mahe, and Kuttiyadi watersheds and rivers of the South Indian Granulite Terrain in Kerala were examined to determine their spatial heterogeneity. Drainage basin asymmetry (Af), transverse topographic symmetry factor (T), hypsometric integral and curve (HI), longitudinal profile, stream length gradient index (SL), and stream concavity index (SCI) suggest heterogeneity in tectonic influence. Clusters of geomorphic anomalies in similar lithology rule out lithologic control on drainage development. However, the orientations of the drainage networks and predominant fractures/lineaments compare closely and reveal strong tectonic influence. Though the watersheds are considered to be in an advanced stage of erosion by the low HI (<30) and high values of SCI, variations in the shape of the hypsometric curves and differences in the SCI values indicate the different influence of tectonic process from watersheds in the north to the south. Among the watersheds, the Mahe and Kuttiyadi are more sensitive to tectonic processes than the Anjarakandy and Thalassery and indicate spatial heterogeneity in the influence of tectonic activity, confirming the grouping of watersheds based on structural and drainage patterns.  相似文献   

14.
The Middle to Upper Ordovician foreland succession of the Ottawa Embayment in central Canada is divided into nine transgressive‐regressive sequences that defines net deepening of a platform succession over ~15 m.y. from peritidal to outer ramp settings, then a return to peritidal conditions over ~3 m.y. related to basin filling by orogen‐derived siliciclastics. With a backdrop of net eustatic rise through the Middle to Late Ordovician, there are several different expressions of structural influence on sequence development in the embayment. During the Middle Ordovician (Darriwilian), foreland‐basin initiation was marked by regional onlap with abundant synsedimentary deformation across a faulted trailing‐margin platform interior; subsequent craton‐interior uplift resulted in voluminous influx of siliciclastics contemporary with local structurally influenced local channelization; then, a formation of a platform‐interior shale basin defines continued intrabasin tectonism. During the Late Ordovician (Sandbian, early Katian), structural influence was superimposed on sea‐level rise as indicated by renewed local development of a platform‐interior shale basin; differential subsidence and thickness variation of platform carbonate successions; abrupt deepening across shallow‐water shoal facies; and, micrograben development coincident with foreland‐platform drowning. These stratigraphic patterns are far‐field expressions of distal orogen development amplified in the platform interior through basement reactivation along an inherited buried Precambrian fault system. Comparison of Upper Ordovician (Sandbian‐lower Katian) sequence stratigraphy in the Ottawa Embayment with eustatic frameworks defined for the Appalachian Basin reveals greater regional variation associated with Sandbian sequences compared to regional commonality in base level through the early Katian.  相似文献   

15.
《Basin Research》2018,30(Z1):568-595
The continental slopes of the South China Sea (SCS), the largest marginal sea on the continental shelf of Southeast Asia, are among the most significant shelf‐margin basins in the world because of their abundant petroleum resources and a developmental history related to sea floor spreading since Late Oligocene time. Based on integrated analyses of seismic, well‐logging and core data, we systematically document the sequence architecture and depositional evolution of the northern continental slope of the SCS and reveal its responses to tectonism, sea‐level change and sediment supply. The infill of this shelf‐margin basin can be divided into seven composite sequences (CS1–CS7) that are bounded by regional unconformities. Composite sequences CS3 to CS7 have formed since Late Oligocene time, and each of them generally reflects a regional transgressive–regressive cycle. These large cycles can be further divided into 20 sequences that are defined by local unconformities or transgressive–regressive boundaries. Depositional–geomorphological systems represented on the continental slope mainly include shelf‐edge deltas, prodelta‐slope fans, clinoforms of the shelf‐margin slope, unidirectionally migrating slope channels, incised slope valleys, muddy slope fans, slope slump‐debris‐flow complexes and large‐scale soft‐sediment deformation of bedding. Changing sea levels, reflected by evidence from sequence architecture in the study area, are generally comparable with those of the Haq (1987) global sea level curve, whereas the regional transgressions and regressions were apparently controlled by tectonic uplift and subsidence. Composite sequences CS3 and CS4 formed from Late Oligocene to Middle Miocene time and represent continental‐slope deposition during a time of northwest‐northeast seafloor spreading and subsequent development of sub‐basins in the southwest‐central SCS. The development of composite sequences CS5 to CS7 after Middle Miocene time was obviously influenced by the Dongsha Movement during convergence between the SCS and Philippine Sea plates. Climatic variations and monsoon intensification may have enhanced sediment supply during Late Oligocene‒Early Miocene (25–21 Ma) and Late Pliocene‒Pleistocene (3–0.8 Ma) times. This study indicates that shelf‐edge delta and associated slope fan systems are the most important oil/gas‐bearing reservoirs in the SCS continental‐slope area.  相似文献   

16.
Facies distributions, stratal geometry and regional erosional bevelling surfaces in Upper Cretaceous (Cenomanian-Santonian) strata of the Alberta foreland basin are interpreted in terms of high-frequency (probably eustatic) relative changes in sea level, superimposed on longer-term basin-floor warping, related to episodic tectonic loading. Thick marine shales correspond to periods of rapid subsidence whereas thin but extensive strandplain sandstones record rapid progradation during slow subsidence. Westward-thickening wedges of coastal plain strata were deposited during initial downwarping of a near-horizontal strandplain, prior to marine transgression. Surfaces of erosional bevelling beneath which between 40 and >160m of strata have been removed extend at least 300 km from the present deformation front and are interpreted to reflect forebulge uplift in the east. Uplift appears to have lagged about 0.25-0.5 Myr behind the onset of accelerated loading. Thin marine sandstones which grade westward into mudstone are interpreted as material winnowed from the crest of the rising forebulge. Subsidence and/or westward migration of the forebulge allowed the sea to flood westward across the eastern flank of the eroded forebulge. The transgressive shoreface cut asymmetric notches which were later blanketed by marine shales which lap out from east to west. The two unconformities which embody the largest erosional vacuity are veneered locally with oolitic ironstone which accumulated in a shallow, sediment-starved setting on the crest of the forebulge. The consistent pattern of erosional bevelling and lap-out of transgressive shales might be interpreted as evidence that the forebulge migrated towards the thrust load over a period of <1 Myr.  相似文献   

17.
18.
A continental sequence of red beds and interbedded basaltic layers crops out in the Sierra Chica of Córdoba Province, Argentina (31.5°S, 64.4°W). This succession was deposited in a half-graben basin during the Early Cretaceous. We have carried out a palaeomagnetic survey on outcrops of this basin (147 sites in seven localities). From an analysis of IRM acquisition curves and detailed demagnetization behaviour, three different magnetic components are identified in the volcanic rocks: components A, B and X are carried by single- or pseudo-single-domain (titano) magnetite, haematite and multidomain magnetite, respectively. Component A is interpreted as a primary component of magnetization because it passes conglomerate, contact, tilt and reversal tests. The carrier of the primary magnetization, fine-grained (titano)magnetite, is present in basalts with a high degree of deuteric oxidation. This kind of oxidation is interpreted to have occurred during cooling. Components B and X are discarded because they are interpreted as recent magnetizations. In the sedimentary rocks, haematite and magnetite are identified as the carriers of remanence. Both minerals carry the same component, which passes a reversal test. The calculated palaeomagnetic pole, based on 55 sites, is Lat. 86.0°S, Long. 75.9°E ( A 95=3.3, K =35). This palaeomagnetic pole supersedes four with anomalous positions reported in previous papers.  相似文献   

19.
The Dien Bien Phu fault zone (DBP), orientated NNE to N, is one of the most seismically active zones in Indochina. In NW Vietnam, this zone is 160 km long and 6–10 km wide, cutting sedimentary and metamorphic rocks of the Late Proterozoic, Palaeozoic and Mesozoic age, as well as Palaeozoic and Late Triassic granitoids. Along the DBP relatively small, narrow pull-apart basins occur, the three largest of which (Chan Nua, Lai Chau and Dien Bien Phu) have been studied in detail. All of them are bounded by sinistral and sinistral-normal faults, responsible for offset and deflected drainage, presence of numerous shutter ridges and displaced terraces and alluvial fans. The normal component of motion is testified to by well-preserved triangular facets on fault scarps, highly elevated straths in river watergaps, overhanging tributary valleys, as well as high and uneven river-bed gradients.Our observations indicate a minimum recent sinistral offset ranging from 6–8 to 150 m for Holocene valleys to 1.2–9.75 km for middle–late Pleistocene valleys in different fault segments. The thickness of Quaternary sediments varies from 5–25 m in the Lai Chau area to some 130 m in the Dien Bien Phu Basin. In the Lai Chau Basin, the middle terrace (23 m) alluvia of Nam Na River at Muong Te bridge have been optically stimulated luminescence/single aliquot regenerative dose technique (OSL-SAR) dated at 23–40 to 13 ka. These sediments were normal-faulted by some 11 m after 13 ka, and mantled by vari-coloured slope loams, 8–12 m thick, containing colluvial wedges composed of angular debris. These wedges were probably formed due to at least three palaeoseismic events postdating 6 ka. In the Dien Bien Phu Basin, in turn, alluvium of the upper Holocene terraces has been OSL-SAR dated to 6.5–7 and 1.7–1.0 ka, whereas the younger (sub-recent) terrace sediments give ages of 0.5–0.2 ka.Displaced terraces and alluvial fans allow us to suppose that the sinistral and sinistral-normal faults bounding narrow pull-apart basins in the southern portion of the DBP fault reveal minimum rates of left-lateral strike-slip ranging from 0.6 to 2 mm/year in Holocene and 0.5–3.8 mm/year in Pleistocene times, whereas rates of Holocene uplift tend to attain 1 mm/year north of Lai Chau and 0.4–0.6 mm/year west of Dien Bien Phu. More precise estimations, however, are difficult to obtain due to poor age control of the displaced drainage. Rates of Quaternary strike-slip are comparable with those of the Red River fault; the sense of movement being, however, opposite. Taking into account the presence of two phases of Late Cenozoic strike-slip of contrasting sense of motion, as well as the geometry of the two fault zones, we hypothesize that the Red River and Dien Bien Phu faults are conjugate faults capable of generating relatively strong earthquakes in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号