首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TOGA-COAREIOP海表通量估算   总被引:3,自引:0,他引:3  
姚华栋  李骥  丁一汇 《气象学报》1996,54(6):693-708
使用TOGA-COAREIOP1992年11月5日至1993年2月19日向阳红5号海上船舶(2°S,156°E)观测资料,通过3种不同的总体方法估算了这个点的海表面通量。首先得出一个中性拖曳系数和风速之间的准线性关系,然后用迭代法处理依赖于稳定度的拖曳系数和输送系数,在此基础上计算了动量、感热和潜热通量。在暖池区与西风相对应的通量远大于东信风相对应的通量,海表通量的量值也依赖于稳定度,特别是在弱风条件下。估算的海表净热量平衡表明从海洋向大气大量的热输送主要是由潜热通量和有效长波辐射产生的。其中潜热通量的数值最大、感热通量数值最小。最后和同期日本R/VHakuho考察船(0°,156°E)用涡动相关法得到的直接测量通量比较,作了精确度分析,表明用总体方法估算的通量是可靠的。并用向阳红5号船的资料估算的有效长波辐射和直接测量值作了比较,也和热带西太平洋TOGA调查作了比较分析。  相似文献   

2.
Direct air-sea flux measurements were made on R/V Kexue #1 at 4 ° S, 156 ° E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-α hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme. There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results. Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heat flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.  相似文献   

3.
With the marine ship observation data set obtained by three cruise-phases of Chinese Xi-angyanghong 5 from November 5,1992 to February 19,1993 in the TOGA-COARE IOP at 2°S,156°E.the sea surface fluxes at this point are estimated by three different bulk schemes.Firstly.aquasi-linear relation is found between the neutral drag coefficients and wind speed.Then,the sta-bility-dependent drag and heat transfer coefficients are solved in the iterative method.Based onthus-derived transfer coefficients,the momentum,sensible and latent heat fluxes are calculated.In the warm pool region,the fluxes corresponding to the westeily winds are much greater thanthose of the easterly trade winds.The magnitude of sea surface fluxes depends upon the atmo-spheric stability as well,in particular in the case of weak wind condition.The estimated sea sur-face net heat budget shows that considerable amount of heat transport from ocean to atmosphere ismainly produced by the effective longwave radiation,latent and sensible heat fluxes.Among themthe value of latent heat flux is the largest and the sensible heat flux is the smallest.Finally,an ac-curacy analysis is made by direct measurements with the eddy-correlation method on the JapaneseR/V Hakuho board at the same time.It is shown that the bulk-derived fluxes are acceptable withmuch confidence.The estimated effective longwave radiation is used to compare with those by di-rect observations on Xiangyanghong 5.This research is compared with TOGA investigation in thetropical western Pacific.  相似文献   

4.
The structure of the upper ocean and surface atmospheric conditions are described during a ship cruise across the central Indian Ocean from December 1995 to January 1996. In situ data on currents, temperature, salinity and surface heat fluxes are described and compared with expected climatological values. Thermocline uplift in the 6-7°S latitude band is linked to the cyclonic shear of near-surface currents. A comparison of quiescent and windy periods demonstrates that evaporative fluxes become amplified near cyclonic vortices fed by southerly meridional winds. The ocean density structure is influenced by salinity gradients, driven by the precipitation-evaporation balance. Near the inter-tropical convergence zone (ITCZ), freshwater fluxes create a stable surface layer and helps to maintain the eastward equatorial counter-current. An analysis of the atmospheric boundary layer from NCEP re-analysis data seeks to place the in situ results into the context of weather conditions at the time of the cruise. Further studies of this kind will improve our understanding of relationships between the Indian Ocean monsoon and surrounding climates.  相似文献   

5.
Vertical turbulent transports of latent and sensible heat through the tropical marine boundary layer were measured with ship and airborne instruments in the GATE experimental area. The measurements from the two systems are compared for cases of simultaneous sampling in the same locations during undisturbed weather and during the wakes of convective disturbances. The paired average fluxes from the airborne eddy correlation measurements and the shipboard bulk aerodynamic measurements, for undisturbed weather, are related with correlation coefficients in the range of 0.6 to 0.9; the correlations depend primarily on stratifications of the aircraft data according to sampling altitude (15–153 m msl) and flight pattern relative to the mean wind. The agreement between the two types of measurements is best for ship data paired with aircraft samples from the lowest altitudes (15 and 30 m) and from alongwind rather than crosswind flights, as is appropriate since the stationary ships monitor the alongwind characteristics of the turbulence. The use of long (1–3 hr) versus short (10 min) ship samples did not significantly affect the comparability with the aircraft samples during undisturbed periods.The good baseline comparability demonstrated by the undisturbed-weather comparisons was applied to interpret the results from the wakes behind showers. Although these paired measurements were few, not only the sensible heat, but also the latent heat flux was shown to decrease substantially with altitude from 10 m to at least 150 m in the wakes, where the mixing was relatively intense. Variations in the fluxes were much greater at the higher level than nearer the sea surface.  相似文献   

6.
Because of the combination of smallconcentrations and/or small fluxes, the determinationof air–sea gas fluxes presents unusual measurementdifficulties. Direct measurements (i.e., eddycorrelation) of the fluxes are rarely attempted. Inthe last decade, there has been an intense scientificeffort to improve measurement techniques and to placebulk parameterizations of gas transfer on firmertheoretical grounds. Oceanic tracer experiments,near-surface mean concentration profiles, eddyaccumulation, and direct eddy covariance methods haveall been used. Theoretical efforts have focusedprimarily in the realm of characterizing the transferproperties of the oceanic molecular sublayer. Recentmajor field efforts organized by the U.S.A. (GASEX-98) andthe European Union (ASGAMAGE) have yielded atmospheric-derivedresults much closer to those from oceanographicmethods. In this paper, we review the physical basisof a bulk-to-bulk gas transfer parameterization thatis generalized for solubility and Schmidt number. Wealso discuss various aspects of recent sensor andtechnique developments used for direct measurementsand demonstrate experimental progress with resultsfrom ASGAMAGE and GASEX-98. It is clear that sensornoise, sensitivity, and cross talk with other speciesand even ship motion corrections still need improvement foraccurate measurements of trace gas exchange over theocean. Significant work remains to resolve issuesassociated with the effects of waves, bubbles, andsurface films.  相似文献   

7.
Turbulent surface heat fluxes (latent and sensible heat) are the two most important parameters through which air–sea interaction takes place at the ocean–atmosphere interface. These fluxes over the global ocean are required to drive ocean models and to validate coupled ocean–atmosphere global models. But because of inadequate in situ observations these are the least understood parameters over the tropical Indian Ocean. Surface heat fluxes also contribute to the oceanic heat budget and control the sea surface temperature in conjunction with upper ocean stratification and ocean currents. The most widely used flux products in diagnostic studies and forcing of ocean general circulation models are the ones provided by the National Centres for Environment Prediction (NCEP) reanalysis. In this study we have compared NCEP reanalysed marine meteorological parameters, which are used for turbulent heat fluxes, with the moored buoy observation in the south-eastern Arabian Sea. The NCEP latent heat flux (LHF) and sensible heat flux (SHF) derived from bulk aerodynamic formula are also compared with that of ship and buoy derived LHF and SHF. The analysis is being carried out during the pre-monsoon and monsoon season of 2005. The analysis shows that NCEP latent as well as sensible heat fluxes are largely underestimated during the monsoon season, however, it is reasonably comparable during the pre-monsoon period. This is largely due to the underestimation of NCEP reanalysis air temperature (AT), wind speed (WS) and relative humidity (RH) compared to buoy observations. The mean differences between buoy and NCEP parameters during the monsoon (pre-monsoon) period are ~21% (~14%) for WS, ~6% (~3%) for RH, and ~0.75% (0.9%) for AT, respectively. The sudden drop in AT during rain events could not be captured by the NCEP data and, hence, large underestimations in SHF. During the pre-monsoon period, major contribution to LHF variations comes from WS, however, both surface winds and relative humidity controls the LHF variations during the monsoon. LHF is mainly determined by WS and RH during the monsoon and, WS is the main contributor during the pre-monsoon.  相似文献   

8.
Procedures have been implemented at the Climate Analysis Center of the National Meteorological Center (CAC/NMC) to provide montly hindcasts of oceanographic conditions in the tropical Pacific. A central component of this system is a primitive equation ocean general circulation model that was developed at the Geophysical Fluid Dynamics Laboratory (GFDL). This is forced with monthly mean fields for wind stress and net heat flux. Until recently the former were derived from ship reports available on the Global Telecommunication System (GTS). The heat fluxes are slightly modified climatological fluxes from Esbensen and Kushnir. To correct for errors in the simulations, thermal data in the upper 450 and surface-temperature data are assimilated montly.Numerical experiments were run to examine the sensitivity of the simulations to small changes in the stress fields. Variations of the drag coefficient by 15% result in differences in sea-surface temperature (SST) and subsurface thermal structure in the eastern Pacific that are comparable with the observed annual and interannual variability. Comparisons with simulations in which the wind stresses were derived from operational atmospheric analyses show sensitivities of the same magnitude. Comparisons of simulations forced either with these of ship-recorded winds to a run with data assimilation show that significant errors are found in both, especially in the off-equatorial regions. Consequently, until forcing fields are improved, accurate simulations will require the use of data assimilation.  相似文献   

9.
利用那曲高寒气候环境观测研究站本部BJ观测点2014年6-8月的近地层观测资料,结合CLM4.5陆面模型,探究空气动力学粗糙长度、叶面积指数、植被覆盖度和热力学粗糙长度参数化方案的改变对陆面能水平衡的模拟结果产生的影响,并且探讨了粗糙度及植被状态指数影响陆面能水平衡模拟性能的机制.结果表明:(1)CLM4.5默认的热力...  相似文献   

10.
Summary The dynamical effect of land surface heterogeneity on heat fluxes in the atmospheric boundary layer (ABL) is investigated using numerical simulations with a non-hydrostatic model over a wide range of grid resolutions. It is commonly assumed that mesoscale or dynamical fluxes associated with mesoscale and convective circulations simulated by a high-resolution model (subgrid (SG) model) on the subgrid scale of a climate model (large-scale (LS) model) represent additional processes in the ABL, which are not considered by the turbulence scheme of the LS-model, and which can be parameterized using the SG-model. The present study investigates the usefulness of this methodology for small-scale and large-scale idealized heterogeneities using a SG-model resolving mesoscale or even microscale circulations to compute the mesoscale fluxes on the scale of the LS-model. It is shown that the dynamical transports as derived from the SG-model should not be used to correct the parameterized turbulent fluxes of the LS-model. The reason is that the subgrid circulations simulated by the SG-model interact with the fields of wind and scalars in the ABL, which results in reduced turbulent fluxes in the ABL. Thus the methodology of previous studies to use mesoscale/dynamical fluxes for the correction of flux profiles simulated by climate models seems to be questionable.  相似文献   

11.
The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m?2 s?1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m?2 s?1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m?2 s?1.  相似文献   

12.
The authors propose a new “three-layer” conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.  相似文献   

13.
In this study, turbulent heat flux data from two sites within the Baltic Sea are compared with estimates from two models. The main focus is on the latent heat flux. The measuring sites are located on small islands close to the islands of Bornholm and Gotland. Both sites have a wide wind direction sector with undisturbed over-water fetch. Mean parameters and direct fluxes were measured on masts during May to December 1998.The two models used in this study are the regional-scale atmospheric model HIRLAM and the ocean model PROBE-Baltic. It is shown that both models overestimate the sensible and latent heat fluxes. The overestimation can, to a large extent, be explained by errors in the air-water temperature and humidity differences. From comparing observed and modelled data, the estimated 8-month mean errors in temperature and humidity are up to 1 °C and 1 g kg-1, respectively. The mean errors in the sensible and latent heat fluxes for the same period are approximately 15 and 30 W m-2, respectively.Bulk transfer coefficients used for calculating heat and humidity fluxes at the surface were shown to agree rather well with the measurements, at least for the unstable data. For stable stratification, the scatter in data is generally large, and it appears that the bulk formulation chosen overestimates turbulent heat fluxes.  相似文献   

14.
It is important to improve estimates of large-scale carbon fluxes over the boreal forest because the responses of this biome to global change may influence the dynamics of atmospheric carbon dioxide in ways that may influence the magnitude of climate change. Two methods currently being used to estimate these fluxes are process-based modeling by terrestrial biosphere models (TBMs), and atmospheric inversions in which fluxes are derived from a set of observations on atmospheric CO2 concentrations via an atmospheric transport model. Inversions do not reveal information about processes and therefore do not allow for predictions of future fluxes, while the process-based flux estimates are not necessarily consistent with atmospheric observations of CO2. In this study we combine the two methods by using the fluxes from four TBMs as a priori fluxes for an atmospheric Bayesian Synthesis Inversion. By doing so we learn about both approaches. The results from the inversion indicate where the results of the TBMs disagree with the atmospheric observations of CO2, and where the results of the inversion are poorly constrained by atmospheric data, the process-based estimates determine the flux results. The analysis indicates that the TBMs are modeling the spring uptake of CO2 too early, and that the inversion shows large uncertainty and more dependence on the initial conditions over Europe and Boreal Asia than Boreal North America. This uncertainty is related to the scarcity of data over the continents, and as this problem is not likely to be solved in the near future, TBMs will need to be developed and improved, as they are likely the best option for understanding the impact of climate variability in these regions.  相似文献   

15.
沙漠绿洲非均匀分布引起的中尺度通量的数值模拟   总被引:9,自引:2,他引:9       下载免费PDF全文
为了研究大气环流模式次网格中尺度通量的参数化问题,本文发展了一个Pielke中尺度边界层与陆面过程的耦合模式,陆面过程模式中包括一个简单植被水热传输模式及一个裸土沙漠模式。利用这一耦合模式,对黑河试验区中沙漠和绿洲这种典型的非均匀下垫面进行了模拟,20多个数值试验的模拟结果表明:(1)中尺度通量在特定的情况下具有和湍流通量相当的重要性,因此,大尺度模式中对中尺度通量的参数化是十分必要的。(2)对于中尺度通量的发展存在一个明显的最优尺度和最优块数,即当绿洲尺度为60 km,3块时,中尺度通量最大。而且当块数增加到一定数目时,可以忽略非均匀效应。(3)背景风速的增大可以使中尺度通量减小;粗糙度的试验说明非均匀块之间的热力差异的减小可使中尺度通量非线性地减小。  相似文献   

16.
ObservationalStudyontheOnsetoftheSouthChinaSeaSouthwestMonsoonYanJunyue(阎俊岳)NationalClimateCenter,Beijing100081ReceivedNovemb...  相似文献   

17.
18.
Summary The computation of the fluxes between ground surface and air in atmospheric models is based on the assumption that the surfaces parameters are horizontally homogeneous. In reality, the surface is heterogeneous, inducing a difference between the computed and realistic fluxes. Assuming that the distributions of temperature and humidity of the surface are normal, the difference of the fluxes for homogeneous and heterogeneous surface is found theoretically. The results show that the effect of the heterogeneity on the radiation flux is small, but attains a certain degree on the sensible and latent heat fluxes. However, this effect on the heat fluxes is not great when the standard deviation of the distribution of the surface parameters also is small. Only in case of great standard deviation, the difference may attain several W/m2 even the order of magnitude of 10 W/m2. Usually the computed sensible and latent heat fluxes are slightly greater for the heterogeneous case than that for homogeneous case, but when the interaction between the temperature and humidity of the surface is considered, the reverse is true. Received January 18, 2001 Revised July 31, 2001  相似文献   

19.
Turbulent fluxes have been evaluated for clear sunny days over the Indian Antarctic station, Maitri, using the basic meteorological data recorded at four levels of a 28 m tower. The data are supplemented with radiation data. The surface layer over Maitri remains thermally stratified during the hours of minimum solar insolation, the so-called nighttime period. The surface winds during this period are generally very strong resulting in high momentum fluxes. In particular, for high winds (>12 m s–1), the temperature gradient is found to be less positive than for moderate winds (4 to 7 m s–1). Solar insolation provided the daytime heating necessary for the diurnal variation of atmospheric stability, and hence, for the turbulent fluxes. Thus, on clear days daytime conditions are marked by upward transport of heat with reduced momentum flux, while stable nighttime conditions are marked by a downward heat flux with increased momentum fluxes.  相似文献   

20.
Leads and polynyas have a great impact on the energy budget of the polar ocean and atmosphere. Since atmospheric general circulation models are not able to resolve the spatial scales of these inhomogeneities, it is necessary to include the effect of fractional sub-grid scale sea-ice inhomogeneities on climate by a suitable parametrization. In order to do this we have divided each model grid-cell into an ice-covered and an ice-free part. Nevertheless, a numerical model requires effective transports representative for the whole grid-box. A simple procedure would be to use grid averages of the surface parameters for the calculation of the surface fluxes. However, as the surface fluxes are non-linearly dependent on the surface properties, the fluxes over ice and open water should be calculated separately according to the individual surface-layer structure of each surface type. Then these local fluxes should be averaged to obtain representative fluxes. Sensitivity experiments with the Hamburg atmospheric general circulation model ECHAM3 clearly show that a subgrid scale distribution of sea ice is a dominant factor controlling the exchange processes between ocean and atmosphere in the Arctic. The heat and water vapour transports are strongly enhanced leading to a significant warming and moistening of the polar troposphere. This affects the atmospheric circulation in high- and mid-latitudes; e.g. the stationary lows are modified and the transient cyclonic activity over the subpolar oceans is reduced. A pronounced impact of sub-grid scale sea-ice distribution on the model climate can only be obtained when the non-linear behaviour of the surface exchange processes is considered by a proper, physically based, averaging of the surface fluxes. A simple linear averaging of surface parameters is not sufficient. Received: 13 September 1994 / Accepted: 25 July 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号