首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites  相似文献   

2.
刘晨  王汝成  吴福元  谢磊  刘小驰 《岩石学报》2021,37(11):3287-3294
喜马拉雅淡色花岗岩具有较好的稀有金属成矿前景。珠穆朗玛峰位于该淡色花岗岩带的中部,其中大量的淡色花岗岩和伟晶岩出露,并成为珠穆朗玛重要的岩石组成部分。近期,我们在珠峰前进沟地区发现并采集了锂成矿伟晶岩,在手标本上可以清晰看到浅褐红色的铁锂云母。进一步的全岩地球化学以及矿物学研究表明,前进沟锂成矿伟晶岩为锂电气石-锂云母型伟晶岩,具有稀有金属元素(Be-Nb-Li)含量高、Rb/Sr比值高、Zr/Hf和Nb/Ta比值低等特征。所有的矿物学和地球化学特征都表明该伟晶岩经历了高度的岩浆分异作用。矿物成分上看,云母由铁锂云母演变为锂云母,电气石由黑电气石演变为锂电气石,Fe、Mg含量降低,Li含量升高,这一特征直接指示着演化过程中岩浆成分的变化。这次发现,是首次在该地区发现锂成矿作用,也是我国喜马拉雅首次报道锂电气石-锂云母型伟晶岩的存在。结合珠穆朗玛峰周围(普士拉、热曲)近期发现的锂辉石-透锂长石型伟晶岩,珠穆朗玛地区很可能成为我国重要的一个锂(Li)成矿远景区。  相似文献   

3.
青藏高原东北缘茶卡北山地区首次发现锂辉石伟晶岩脉群。这些伟晶岩脉沿宗务隆山南缘断裂北侧密集出露,并呈狭窄带状北西向展布。到目前为止,已发现9条含绿柱石锂辉石伟晶岩脉(Li2O平均品位为1.11%~3.13%,BeO平均品位为0.06%)和13条含绿柱石伟晶岩(BeO平均品位为0.044%~0.056%)。伟晶岩锆石U-Pb测年确定其成岩成矿年龄为217 Ma,含绿柱石伟晶岩具有高SiO2(71.62%~77.34%)、Al2O3(15.57%~17.55%)和富K2O(1.99%~2.02%)、Na2O(6.09%~6.24%),稀土元素总量非常低(ΣREE=5.2~9.1μg/g),轻稀土元素略微富集((La/Yb)N=6.8~10.1),Eu具负异常(δEu=0.25~0.92),具有Cs、Rb、Ta、P和Pb富集,以及Ba、Th、La、Ce、Sr、Nd和Ti的强烈亏损特征。含绿柱石锂辉石伟晶岩具有高SiO2(75.73%~77.34%)、Al2O3(15.58%~17.52%)和富Na2O(3.0%~3.16%)、贫K2O(0.36%~0.79%),稀土元素总量也很低(ΣREE=5.3~6.0μg/g),轻稀土元素略微富集((La/Yb)N=3.1~4.6),Eu具强烈负异常(δEu=0.17~0.23)。相对于含绿柱石伟晶岩,含绿柱石锂辉石伟晶岩更加富集Cs、U、Nb、Ta、Th、Sn和B,更亏损K和P。含绿柱石伟晶岩和含绿柱石锂辉石伟晶岩锆石具有相似的Hf同位素组成,εHf(t)值分布范围在–15.1~–12.9之间,对应的Hf同位素地壳模式年龄tDM2为1.99~2.22 Ga,表明伟晶岩源于全吉地块古元古代地壳物质的重熔再造。茶卡北山(含绿柱石)含绿柱石锂辉石伟晶岩的发现可推断宗务隆山构造带东段是青藏高原北部一条新的、重要的锂铍成矿带,除Li和Be外,Nb、Ta、Cs和Sn可能也是有潜力的成矿元素。  相似文献   

4.
he Sn-(Nb, Ta) mineralization of the Wamba field (central Nigeria) occurs in muscovite-quartz-microcline pegmatites, which are related to the late-orogenic Pan-African (f 550 Ma) "Older Granites". The emplacement of granites and pegmatites was controlled by late Pan-African shear tectonics. The granitoid magmatism was multiphase and has produced peraluminous biotite granite, biotite-muscovite granite, and muscovite granite plutons. Sodic metasomatism has altered highly evolved granite cupolas and many of the pegmatite dikes. The pegmatitic mineralization of predominantly cassiterite is closely associated with albitization. Chemical data of granites and granitic and pegmatitic muscovites show that Rb, Cs, Sn, Nb, and Ta are enriched during both magmatic and postmagmatic evolution, with highest contents of these elements in early muscovites of the albitized and mineralized pegmatites. Trace-element chemistry of the pegmatitic muscovites reveals a chemical zonation of the pegmatite field related to the late-orogenic shear system.  相似文献   

5.
The Kenticha rare-element pegmatite, a globally important tantalite source in the Neoproterozoic Adola Belt of southern Ethiopia, is a highly fractionated, huge (2,000 m long and up to 100 m thick), subhorizontal, sheet-like body, discordantly emplaced in ultramafic host rock. It corresponds to the spodumene subtype of the rare-element pegmatite class and belongs to the lithium–cesium–tantalum petrogenetic family. The Kenticha pegmatite is asymmetrically zoned from bottom to top into granitic lower zone, spodumene-free intermediate zone, and spodumene-bearing upper zone. A monomineralic quartz unit is discontinuously developed within the upper zone. Whole-rock data indicate an internal geochemical differentiation of the pegmatite sheet proceeding from the lower zone (K/Rb ~36, K/Cs ~440, Al/Ga ~2,060, Nb/Ta ~2.6) to the upper zone (K/Rb ~19, K/Cs ~96, Al/Ga ~1,600, Nb/Ta ~0.7). The latter one is strongly enriched in Li2O (up to 3.21%), Rb (up to 4,570 ppm), Cs (up to 730 ppm), Ga (up to 71 ppm), and Ta (up to 554 ppm). Similar trends of increasing fractionation from lower zone to upper zone were obtained in muscovite (K/Rb 23–14, K/Cs 580–290, K/Tl 6,790–3,730, Fe/Mn 19–10, Nb/Ta 6.5–3.8) and columbite–tantalite (Mn/Mn + Fe 0.4–1, Ta/Ta + Nb 0.1–0.9). The bottom-to-top differentiation of the Kenticha pegmatite and the Ta mineralization in its upper part are principally attributed to upward in situ fractionation of a residual leucogranitic to pegmatitic melt, largely under closed system conditions. High MgO contents (up to 5.05%) in parts of the upper zone are the result of postmagmatic hydrothermal alteration and contamination by hanging wall serpentinite. U–Pb dating of Mn-tantalite from two zones of the Kenticha pegmatite gave ages of 530.2 ± 1.3 and 530.0 ± 2.3 Ma. Mn-tantalite from the Bupo pegmatite, situated 9 km north of Kenticha, gave an age of 529.2 ± 4.1 Ma, indicating coeval emplacement of the two pegmatites. The emplacement of the pegmatites is temporally related to postorogenic granite magmatism, producing slightly peraluminous, I-type plutons in the area surrounding the Kenticha pegmatite field. Fractionated members of this suite might be envisaged as potential parental magmas.  相似文献   

6.
Trace element distribution patterns are reported for whole rocks (granites, aplites, greisens, pegmatites, alaskites) and minerals from the Kenticha pegmatite field. The data shed light on the evolution, regional and local zonal pattern of the granitepegmatites and associated mineralization in the Kenticha belt. The complex mineralization of commercial concentrations of Ta, Nb, Hf, Zr, REE, U and Th is related to Be, Li, Cs, Rbbearing zones of pegmatites and is structurally controlled. Whole rock chemical signatures of the suite of felsic rocks of the Kenticha belt are predominantly similar to those generated by subduction in modern magmatic arcs and indicate a mantle derivation. Columbotantalite concentrates extracted from the pegmatitic ores represent the basic raw materials from which a number of possible byproducts can be recovered.  相似文献   

7.
湖南仁里稀有金属矿田是中国近年来新发现的一处重要的花岗伟晶岩型铌、钽、锂等稀有金属矿产地,文章针对矿田含锂伟晶岩地球化学特征、成矿时代及其与花岗岩的关系,选取传梓源锂铌钽矿床内规模最大的206号锂辉石伟晶岩脉开展地球化学和白云母Ar-Ar定年工作,并与区内其他伟晶岩、花岗岩的地球化学特征、成岩时代对比分析.传梓源206号锂辉石伟晶岩属高分异稀有金属伟晶岩,形成时代为(135.4±1.4)Ma,岩石地球化学表现为高硅、高铝、低钙、相对富碱、钙碱性及过铝质特征;稀土元素总量很低,以轻稀土元素为主;微量元素富集Cs、Rb、U、Ta、Nb、Zr、Hf,相对亏损Ba、Ti,Zr/Hf、Nb/Ta比值低且集中.幕阜山地区稀有金属成矿可分为2期:第1期稀有金属成矿时代约145 Ma,与燕山早期岩浆活动有关;第2期稀有金属成矿时代135~125 Ma,为主成矿期,该期稀有金属伟晶岩与燕山晚期的二云母二长花岗岩存在成因联系,两者为同源岩浆连续结晶分异过程中不同阶段的产物.稀有金属富集成矿经历了岩浆-热液两阶段作用,Be、Nb、Ta、Li、Rb、Cs等稀有元素的富集多发生于岩浆结晶分异晚期,热液作用使Ta、Li、Rb、Cs再次富集.  相似文献   

8.
Summary Granitic pegmatites characterized by advanced accumulation and fractionation of incompatible rare lithophile elements (Li, Rb, Cs, Be, Ta Nb, B, P and F), often contain mineral assemblages which host lithium-rich micas. Lepidolite and lithian muscovite occur in high-pressure spodumene, low-pressure petalite, phosphorus-enriched amblygonite and fluorine-rich lepidolite subtypes of orogenic affiliated complex type granitic pegmatites and rarely in anorogenic affiliated amazonite-bearingTrace element data determined by X-ray fluorescence for lepidolite of various pegmatite subtypes, morphology (book, scaly, fine-grained), position within the pegmatite (primary zones, replacement units, pockets), mineral assemblages and tectonic affinity (orogenic vs anorogenic) show extreme fractionation of Rb and Cs; modest levels of T1, Ga, Nb, Ta, Sn and Zn; and typically low abundances of Ba, Sr, Ni, Pb, Y, V, W and Zr. Extreme fractionation is indicated by low values of K/Rb, K/Cs and Nb/Ta which are lowest in lepidolite from petalite subtype pegmatites.No systematic differences in trace element content is evident among the different lepidolite morphologies or paragenetic position. Lepidolite from spodumene subtype pegmatites are generally slightly less fractionated than those from petalite or lepidolite subtype pegmatites.
Spurenelement-Chemie von Lithium-reichen Glimmern aus granitischen Pegmatiten
Zusammenfassung Granitische Pegmatite, die durch fortgeschrittene Anreicherung und Fraktionierung von inkompatiblen, seltenen, lithophilen Elementen (Li, Rb, Cs, Be, Ta Nb, B, P und F) charakterisiert sind, enthalten häufig Mineralparagenesen mit Lithium-reichen Glimmern. Lepidolith und Li-Muskowit treten in Hochdruck-Spodumen, in Niedrigdruck-Petalit, in mit Phosphor angereichertem Amblygonit und in Fluor-reichen Lepidolith-Unterarten aus komplexen orogenen granitischen Pegmatiten und selten auch aus anorogenen, Amazonit-führenden Pegmatiten, auf.Spurenelement-Daten aus der Röntgenfluoreszenzanalyse von Lepidolith aus verschiedenen Pegmatit-Untertypen, die Morphologie (tafelig, schuppig, feinkörnig), die Position innerhalb des Pegmatits (primäre Zonen, verdrängte Einheiten, Taschen), Mineralbestände und tektonische Affinität (orogen gegen anorogen) zeigen eine extreme Fraktionierung von Rb und Cs, bescheidene Gehalte an TI, Ga, Nb, Ta, Sn und Zn; und typischerweise geringe Häufigkeiten von Ba, Sr, Ni, Pb, Y, V, W und Zr. Die extreme Fraktionierung wird durch niedrige Werte von K/Rb, K/Cs und Nb/Ta angezeigt, die in Lepidolith von Pegmatiten des Petalit-Subtyps am niedrigsten sind.Aus den verschiedenen Morphologien oder paragenetischen Positionen von Lepidolith sind keine systematischen Unterschiede im Spurenelementgehalt ersichtlich. Lepidolith aus Pegmatiten des Spodumen-Subtyps sind generell etwas weniger fraktioniert als jene von Pegmatiten des Petalit- oder Lepidolith-Subtyps.


With 4 Figures  相似文献   

9.
华南晚中生代幕阜山花岗复式岩基内部及周缘广泛发育花岗伟晶岩脉,部分岩脉富含Li-Nb-Ta等元素,形成大型-超大型稀有金属矿床.本文以幕阜山北缘断峰山地区贫锂伟晶岩类和南缘仁里地区新发现的富锂伟晶岩为主要研究对象,通过详细的岩相学和主要及特征矿物(长石、云母、电气石、石榴子石、绿柱石、铌钽铁矿)的微区原位EPMA和LA-ICP-MS主微量元素地球化学的对比分析,深入探讨了伟晶岩的分类、成因演化及成矿潜力.按照特征矿物组合将伟晶岩划分为断峰山地区电气石伟晶岩、电气石-绿柱石伟晶岩、绿柱石伟晶岩、铌钽铁矿-绿柱石伟晶岩和仁里地区的锂电气石-锂云母伟晶岩5类.5类岩脉中的长石、云母、电气石和/或石榴子石的化学成分记录了不同程度花岗伟晶岩脉的演化阶段,按岩浆演化程度由低至高依次为电气石伟晶岩→电气石-绿柱石伟晶岩→绿柱石伟晶岩→铌钽铁矿-绿柱石伟晶岩→锂电气石-锂云母伟晶岩,并分别对应伟晶岩稀有金属富集程度分类中的无矿→(含Be)→富Be→富Be、Nb、Ta→富Li、Be、Nb、Ta阶段.这一结果表明仁里地区伟晶岩已演化至晚期富集多种稀有金属元素阶段,具有Li-Nb-Ta多金属成矿潜力,而断峰山地区的伟晶岩演化程度相对较低.断峰山电气石-绿柱石伟晶岩中的色带电气石晶体发育强烈成分环带,由内向外可明显分为5环,自核部至边部,Li、Zn、Ga、Ge、Nb、Ta、Sn、Pb等不相容元素和金属元素含量逐渐升高,清晰记录了正常岩浆演化序列及稀有金属富集过程.结合前人有关幕阜山花岗岩类的研究资料,本文认为幕阜山伟晶岩为该地区晚中生代巨量花岗质岩浆经历长期结晶分异作用晚期的分异产物.   相似文献   

10.
The Hagendorf–Pleystein Pegmatite Province, SE Germany, is known for the largest feldspar–quartz pegmatite in Central Europe and renowned for its rare elements, e.g., Li, Nb, and Ta, giving rise to a spate of exotic minerals, mainly phosphates. Argillaceous rocks are scarce and eclipsed by the numerous mineralogical investigations on rare phosphates. These phosphate pegmatites are for the first time subjected to a clay mineralogical study, rendered possible by the newly discovered strongly kaolinized aplite near the Kreuzberg Quartz Pegmatite at Pleystein. The supergene kaolin akin to the residual kaolin deposit at Tirschenreuth, SE Germany, was analyzed for its major and minor elements by XRF and micro-chemically by EMPA. Mineralogical investigations involved XRD, IR spectroscopy, thermoanalytical studies, CEC analyses and SEM-EDX. Supergene kaolinization forms a repository for heavy minerals critical for the interpretation of the emplacement of the Late Paleozoic pegmatites as well as a matrix for pegmatite-related trace elements and thereby may be used as an ore guide during exploration of these rare metal pegmatites. The resultant kaolin is also the protagonist in the story of exhumation and destruction of a pegmatite by weathering and erosion. Irrespective of the strength of kaolinization, Nb–Ta–Ti heavy minerals can be identified in the regolith atop the host pegmatite or aplite and used for genetic interpretation of the primary mineralization and the origin of the felsic intrusive. Nb–Ta solid solution series (s.s.s.) have to be treated cautiously because of the disposition of Ta-enriched Nb–Ta oxide s.s.s. to undergo corrosion in their tantalite lamellae more easily than in their niobium-enriched zones. Kaolinization may alter the primary Nb/Ta ratio but not to the extent that Ta is released completely. The most strongly kaolinized new aplite is the youngest member of a series of felsic intrusive rocks in the Pleystein pegmatite–aplite system. The supergene kaolinization extending from the Miocene through the Pliocene can easily be correlated by “minero-stratigraphy” with the larger Tirschenreuth kaolin deposit. The four stages established in the area furnish evidence of gradual alkalinization of the meteoric pore fluids throughout the Neogene and the Quaternary. Youngest stages are found at Tirschenreuth, the oldest regolith stage is present at Pleystein.  相似文献   

11.
Mineralogy and Petrology - This study presents mineralogical characterization of opaque assemblages from I- and S-type granites from the Araçuaí orogen, southeastern Brazil that belong...  相似文献   

12.
新疆阿尔泰造山带是我国重要的稀有金属矿床矿产资源基地,尤以富Li和富Be伟晶岩型矿床广泛发育为特色。本研究选择阿尔泰造山带卡鲁安-阿祖拜矿田富Li和富Be伟晶岩型矿床开展典型解剖,以贯穿岩浆阶段-伟晶岩阶段的白云母矿物为研究主线,探讨不同矿化类型伟晶岩中云母的成分演化规律、花岗岩与伟晶岩的成因联系。矿物学特征显示富Be伟晶岩中发育大量磷酸盐矿物,而富Li伟晶岩含较多橙色锰铝榴石、锂云母而缺乏典型的Fe-Mn磷酸盐。白云母成分分析显示,从白云母花岗岩→富Be伟晶岩→富Li伟晶岩,白云母总体呈Nb含量和Nb/Ta值降低,指示白云母花岗岩、富Be伟晶岩经历了不同程度的分离结晶作用,也代表了富Li伟晶岩的岩浆分异演化程度更高。尽管利用云母成分变化(尤其是K、Rb、Cs等大离子亲石元素)模拟岩浆结晶演化过程,显示可由初始花岗质岩浆经瑞利分离结晶作用依次形成白云母花岗岩→富Be伟晶岩→富Li伟晶岩的假设。但研究区年代学、矿物学、同位素证据指示富Li伟晶岩和富Be伟晶岩具有不同的熔体性质和形成时代。因此,应用云母成分探讨伟晶岩的成因联系应当建立在花岗岩-伟晶岩系统具有合理的时空分布和其它支持源自同一...  相似文献   

13.
The Araçuaí orogen of southeastern Brazil together with the West Congo belt of central West Africa form the Araçuaí–West Congo orogen generated during closure of a terminal segment of the Neoproterozoic Adamastor Ocean. Corresponding to an embayment in the São Francisco–Congo Craton, this portion of the Adamastor was only partially floored by oceanic crust. The convergence of its margins led to the development of the Rio Doce magmatic arc between 630 Ma and 580 Ma. The Rio Doce magmatic arc terminates in the northern portion of the Araçuaí orogen. Granitic plutons exposed in the northern extremity of the arc provide a rare opportunity to study magmatism at arc terminations, and to understand the interplay between calc-alkaline magma production and crustal recycling. The plutons forming the terminus of the arc consist of granodiorites, tonalites and monzogranites similar to a magnesian, slightly peraluminous, calcic- (68%) to calc-alkaline (24%), with minor alkali-calcic (8%) facies, medium- to high-K magmatic series. Although marked by negative Nb–Ta, Sr and Ti anomalies, typically associated with subduction-related magmas, the combined Sr, Nd and Hf isotopic data characterize a crustal signature related to anatexis of metamorphosed igneous and sedimentary rocks, rather than fractional crystallization of mantle-derived magmas. Zircon U–Pb ages characterizes two groups of granitoids. The older group, crystallized between 630 and 590 Ma, experienced a migmatization event at ca. 585 Ma. The younger granitoids, emplaced between 570 and 590 Ma, do not show any evidence for migmatization. Most of the investigated samples show good correlation with the experimental compositional field of amphibolite dehydration-melting, with some samples plotting into the field of greywacke dehydration-melting. The studied rocks are not typical I-type or S-type granites, being particularly similar to transitional I/S-type granitoids described in the Ordovician Famatinian arc (NW Argentina). We suggest a hybrid model involving dehydration-melting of meta-igneous (amphibolites) and metasedimentary (greywackes) rocks for magma production in the northern termination of the Rio Doce arc. The real contribution of each end-member is, however, a challenging work still to be done.  相似文献   

14.
Columbite-group minerals (CGM) account for the majority of the production of tantalum, an important metal for high-technology applications. Along with other Ta–Nb oxides such as tapiolite, wodginite, ixiolite and pyrochlore supergroup minerals, CGM are recovered from rare-metal granites and granitic rare-element pegmatites. In this paper mineralogical and geochemical data with a focus on CGM, tapiolite, wodginite and ixiolite are presented for rare-element granites and pegmatites from worldwide occurrences except Africa that has been covered in a previous contribution (Melcher et al., 2015). Major and trace element data of the Ta–Nb oxides are presented and compared for a total of 25 granite/pegmatite provinces, and one carbonatite for comparison. Based on CGM compositions, the data allow to distinguish between various subgroups of Li–Cs–Ta (LCT)-family pegmatites, Nb–Y–F (NYF)-family pegmatites, mixed LCT–NYF pegmatites, and rare-element granites.Each period of Ta-ore formation in Earth history is characterised by peculiar mineralogical and geochemical features. Some of the largest and economically most important rare-element pegmatite bodies are located within Archean terrains and intruded ultramafic and mafic host rocks (e.g., Tanco/Canada, Wodgina and Greenbushes/Western Australia, Kolmozero/Kola). They are highly fractionated, of LCT affinity throughout and yield complex mineralogical compositions. The variety of minor and trace elements incorporated attests to a rather insignificant role of the immediate host rocks to their geochemical signature and rather points to the significance of the composition of the underlying crustal protoliths, internal fractionation and the processes of melt generation. Many of the Archean pegmatites carry significant Li mineralization as spodumene, petalite, and amblygonite, and all of them are also characterised by elevated Li in CGM. In addition, Sb and Bi are important trace elements, also reflected by the occasional presence of stibiotantalite and bismutotantalite. REEN patterns of CGM are dominated by the MREE or HREE, and range from very low to high total REE concentrations. Negative Eu anomalies are omnipresent. Scandium contents are also highly variable, from very high (Tanco) to very low concentrations (Wodgina, Kolmozero).A second period of worldwide pegmatite formation was in the Paleoproterozoic. All CGM analysed derive from LCT-family pegmatites except samples from the Amazonas region where Ta is mined from rare-metal granites at Pitinga. Pegmatites intruded highly variable lithologies including metasediments, metabasites, gneiss, granite and quartzite within a variety of structural and paleogeographic settings; however, most of them are syn- to post-orogenic with respect to major Paleoproterozoic orogenic events. Minor and trace element signatures are similar to CGM from Archean pegmatites. Some are characterised by considerable REE enrichment (São João del Rei/Brazil; Amapá/Brazil; Finnish Lapland/Finland), whereas others have normal to low total REE concentrations (Black Hills/USA, Bastar/India). Examples with high REE commonly are enriched in Sc and Y as well, and are often transitional to NYF-family pegmatites.The Mesoproterozoic period is comparatively poor in rare-element pegmatites and rare-metal granites. Mineralogical and chemical attributes of ixiolite–wodginite, tapiolite, CGM and rutile from placer material in Colombia point to an unusual pegmatite source of NYF affinity, yielding high total REE, Sc and Th at low Li and Bi. REE patterns have typical negative Eu and Y anomalies.A third major period of pegmatite formation was the Early Neoproterozoic at around 1 Ga, documented in the Grenvillian (North America), the Sveconorwegian (northern Europe) and the Kibaran in central Africa. CGM are present in numerous, mostly small pegmatites, although larger examples also occur (e.g., Manono in the D.R. Congo; Melcher et al., 2015). Pegmatite fields often display a zonal arrangement of mineralised pegmatites with respect to assumed “fertile” parent granites. They intrude metasediments, metabasites, gneiss and granite of middle to upper crustal levels and display a variety of mineralogical and chemical characteristics. Pegmatites of the Sveconorwegian and Grenville domains are usually of the NYF type and CGM are characterised by elevated Y, REE, Th and Sc. In contrast, the pegmatites of central (Kibara Belt) and southwestern Africa (Orange River Belt) are commonly of LCT affinity carrying spodumene, beryl and cassiterite (Melcher et al., 2015). These CGM have elevated conce ntrations of Li, Mg, Sn and Hf. Total REE concentrations are low except for the Sveconorwegian, and exhibit a variety of shapes in normalised diagrams.The fourth major pegmatite-forming event coincides with amalgamation of Gondwana at the Neoproterozoic/Paleozoic boundary around 550 Ma ago. This event is omnipresent in Africa (“Panafrican”) and South America (“Brasiliano event” documented in the Eastern Brazilian pegmatite and Borborema provinces). Pegmatites often intruded high-grade metamorphic terrains composed of metasediments including schist, marble, quartzite, as well as gneiss, amphibolite, ultramafic rocks, and granite. Within the Neoproterozoic, rare-metal granites of NYF affinity are locally abundant. Pegmatites show both LCT and NYF affinities, and mixed types occur in Mozambique. The Alto Ligonha and Madagascar provinces are characterised by abundant REE and Sc both within Ta–Nb-oxides and as separate mineral phases. Notably, some pegmatite provinces are almost devoid of cassiterite, whereas others carry cassiterite in economic amounts.In the Phanerozoic (younger than 542 Ma), pegmatites formed at all times in response to orogenetic processes involving various continents and terranes during the long-time amalgamation of Pangea and the Alpine orogenies. Whereas some activity is related to the Pampean, Acadian and Caledonian orogenies, the Variscan/Hercynian and Alleghanian orogenies are of utmost importance as manifested in pegmatite formation associated with Sn–W mineralised granites in central and western Europe as well as in the Appalachians. Most of the Variscan and Alleghanian pegmatites are of LCT affinity, although NYF and some mixed types have been described as well. Variscan pegmatite formation culminated at ca. 330 to 300 Ma, whereas Alleghanian pegmatites range in age from about 390 Ma to about 240 Ma. Most are syn- to post-orogenic and were emplaced at different crustal levels and into a variety of host rocks. Degree of fractionation as well as minor and trace element geochemistry of Ta–Nb oxides are rather variable and cover the complete field of CGM compositions. REE patterns are characterised by prominent negative Eu anomalies.Some Mesozoic and Cenozoic pegmatites and rare-metal granites from Southeast Asia and the Russian Far East are included in the compilation. Rare-metal granites of the Jos Plateau (Nigeria) were previously investigated (Melcher et al., 2015). The proportion of NYF pegmatites and rare-metal granites in the Mesozoic is striking, i.e. illustrated by Jos, Orlovka, Ulug Tanzek as well as the southeast Asian deposits related to tin granites. CGM from these areas are invariably rich in REE, Sc, Y and Th. In all rare-metal granites, Ta–Nb oxides are characterised by high total REE concentrations and both, negative Eu and Y anomalies in chondrite-normalised REE diagrams.Although constituting a vastly different magmatic system compared to rare metal pegmatites and granites, we included the Upper Fir carbonatite from the Canadian Cordillera, for comparison, because it is characterised by unusal high Ta contents. As expected, the CGM differ from the pegmatitic CGM by having high Mg and Th, and low U concentrations in columbite-(Fe) and lack an Eu anomaly. However, they also show similarities to primitive CGM from rare metal pegmatites of the NYF family in terms of the REE pattern and the increase in #Ta and #Mn towards the margins of the CGM. Our findings support recent results presented in Chudy (2014) indicating that the Ta enrichment in some carbonatites might be attributed to magmatic processes and conditions that are similar to the pegmatitic systems.  相似文献   

15.
目前研究已经显示,喜马拉雅淡色花岗岩具有良好的铍-铌钽-锂等稀有金属成矿潜力。其中珠穆朗玛峰(后文简称珠峰)西侧的普士拉一带,是喜马拉雅地区锂辉石伟晶岩集中的区域。本文报道在普士拉东北的珠峰北侧热曲地区,发现有含锂辉石伟晶岩脉,这些伟晶岩呈透镜体状集中赋存于肉切村群"黄带层"大理岩与北坳组钙质硅酸岩的接触界线部位,同围岩一起经历了强烈的变形,且未出现明显内部分带结构,矿物组成中包含锂辉石、透锂长石、绿柱石、铌钽铁矿、锡石等锂-铍-铌钽-锡稀有金属矿物,其Li2O含量达1.30%~2.15%,显示经历过高程度分异演化的岩浆结晶特征。热曲含锂辉石伟晶岩的发现表明珠峰地区具有锂成矿的良好前景,是未来锂矿产勘查的重点靶区,而藏南拆离系韧性剪切带中的肉切村群"黄带层"下部与北坳组顶部位置,是锂辉石伟晶岩的重要富集层位,值得今后在锂资源寻找过程中予以充分关注。  相似文献   

16.
The Araçuaí orogen is the Brazilian counterpart of the Araçuaí‐West Congo orogenic system (AWCO), a component of the Ediacaran‐Cambrian orogenic network formed during the amalgamation of West Gondwana. The northwestern portion of the Araçuaí orogen is dominated by a succession of metasedimentary rocks made up of Meso‐ to Neoproterozoic rift, passive margin and syn‐orogenic sequences, locally intruded by post‐collisional granites. These sequences are involved in three distinct tectonic units, which from west to east are: the southern Espinhaço fold‐thrust system (SE‐thrust system), the normal‐sense Chapada Acauã shear zone (CASZ) and the Salinas synclinorium. Three deformation phases were documented in the region. The first two phases (D1 and D2) are characterized by contractional structures and represent the collisional development stage of the orogen. The third phase (D3) is extensional and currently viewed as a manifestation of orogenic collapse of the system. The distribution of the metamorphic mineral assemblages in the region characterizes two metamorphic domains. The M‐Domain I on the west, encompassing the SE‐thrust system and the CASZ, is marked by a syn‐collisional (syn‐D1) Barrovian‐type metamorphism with P–T conditions increasing eastwards and reaching ~8.5 kbar at ~650°C between 575 and 565 Ma. The M‐Domain II comprises the Salinas synclinorium in the hangingwall of the CASZ, and besides the greenschist facies syn‐collisional metamorphism, records mainly a Buchan‐type metamorphic event, which took place under 3–5.5 kbar and up to 640°C at c. 530 Ma. The northwestern Araçuaí orogen exhibits, thus, a paired metamorphic pattern, in which the Barrovian and Buchan‐type metamorphic domains are juxtaposed by a normal‐sense shear zone. Lithospheric thinning during the extensional collapse of the orogen promoted ascent of the geotherms and melt generation. A large volume of granites was emplaced in the high grade and anatectic core of the orogen during this stage, and heat advected from these intrusions caused the development of Buchan facies series over a relatively large area. Renewed granite plutonism, hydrothermal activities followed by progressive cooling affected the system between 530 and 490 Ma.  相似文献   

17.
We present new data on the age, composition, and environments of formation of granites of the Kystarys complex and the associated Li-rich rare-element pegmatites of the South Sangilen pegmatite belt including the large Tastyg lithium deposit. It has been established that they formed during the Early Paleozoic collisional orogeny in the Tuva-Mongolian massif at the Cambrian-Ordovician boundary. The granites of the Kystarys complex are moderately alkaline high-K rocks and are enriched in Zr, Nb, Y, and REE; therefore, they are classified as postcollisional, transitional to within-plate (A-type). The spodumene pegmatites of the South Sangilen pegmatite belt are similar to the above granites in age and isotopic and geochemical parameters, which suggests a paragenetic relationship between these rocks. Pegmatites form several pegmatite fields within the belt, which differ in trace-element signatures. In addition to predominant Li, Cs, and Ta, specific to all spodumene pegmatites (LCT family), pegmatites of two fields have high contents of Nb, Y, REE, and Zr, which are indicator elements of NYF family pegmatites. It has been established that the formation of spodumene pegmatites with combined LCT-NYF geochemical signatures was preceded by the intrusion of dikes of monzogabbro with the geochemical characteristics of OIB and of alkali aegirine granites and by the formation of associated metasomatites enriched in Zr, Nb, Y, and REE. Based on the geological, mineralogical, and geochemical data, we substantiate the hypothesis of the formation of Li-bearing granite-pegmatite melts from a mixed source resulted from the influence of fluids of an alkaline igneous complex of mantle genesis on the crustal protolith.  相似文献   

18.
Rare metal mineralization of Sn, Nb-Ta and W is encountered in the Gebel Dihmit area (GDA), southeastern Aswan, Egypt. The mineralization is related to muscovite granites and their pegmatite derivatives. The pegmatites are divided into three types according to their main mineral assemblages: K-feldspar-muscovite-tourmaline, K-feldspar-albite-muscovite and albite-K-feldspar-lepidolite veins. Petrogenetic studies indicate that Sn and Nb-Ta mineralization extends from the late-magmatic stage to the pegmatite and hydrothermal stages of the (GDA) suite. The albite-K-feldspar-lepidolite granite is composed dominantly of albite, lepidolote, and quartz, with topaz, K-feldspar and amblygonite. The accessory minerals are zircon, monazite, pollucite, columbite-tantalite, microlite and Ta-rich cassiterite. Phenocrysts of quartz, topaz and K-feldspar contain abundant inclusions of albite laths and occasional lepidolite crystals along growth zones (snowball texture), indicating simultaneous crystallization from a subsolvus, residual magma. The origin of the pegmatites is attributed to extreme differentiation by fractional crystallization of a granitic magma. The economic potential for rare metals was evaluated in the geochemical discrimination diagrams. Accordingly, some of the pegmatites are not only highly differentiated in terms of alkalis, but also the promising targets for small-scale Ta and, to a less extent, Sn. The pegmatites also provide the first example of Fe-Mn and Nb-Ta fractionation in successive generations of granites to cassiterite-bearing pegmatites, which perfectly ex- hibit similar fractionation trends established for primary columbite-tantalite in the corresponding categories of pegmatites. Uranium and Th of magmatic origin are indicated by the presence of thorite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock- foring minerals such as feldspar and the formation of secondary minerals such as uranophane..  相似文献   

19.
Detrital zircon U-Pb geochronology combined with Hf isotopic and trace element data from metasedimentary rocks of the Aracuai Belt in southeastern Brazil provide evidence for break-up of the Congo-Sao Francisco Craton. The U-Pb age spectra of detrital zircons from metasediments of the Rio Doce Group(RDG) range from 900-650 Ma and define a maximum depositional age of ca. 650 Ma. Zircon trace element and whole rock data constrain an oceanic island arc as source for the deposition setting of the protoliths to the metasediments. Zircon ε_(Hf)(t) values from these rocks are positive between +1 and +15, supporting previous evidence of a Neoproterozoic extensional phase and oceanic crust formation in a precursor basin to the Aracuai Belt. Recrystallization of detrital zircon at ca. 630 Ma is compatible with a regional metamorphic event associated with terrane accretion to the Paleoproterozoic basement after transition from an extensional to a convergent regime. The juvenile nature, age spectra and trace element composition recorded in detrital zircons of metasediments from the Aracuai Belt correspond with zircons from metasedimentary rocks and oceanic crust remnants of other orogenic belts to its south. This suggests that rifting and oceanic crust formation of the entire orogenic system, the so-called Mantiqueira Province, was contemporaneous, most likely related to the opening of a large ocean. It further indicates that the cratonic blocks involved in the orogenic evolution of the Mantiqueira Province were spatially connected as early as 900 Ma.  相似文献   

20.
可可托海3号脉伟晶岩型稀有金属矿床是阿尔泰造山带产出的规模最大的伟晶岩脉,其完美的同心环状结构分带举世闻名。云母和长石作为3号脉9个结构带的贯通性矿物,由外向内表现不同的结构和成分特征。其中,云母由白云母系列向锂云母系列演化,白云母呈黄-绿色中细粒→白色或绿色中粗粒-巨晶→白色或绿色书状集合体→白色或绿色中粗粒-巨晶,锂云母呈玫瑰紫中细粒鳞片状或楔状集合体,BSE图像下云母表现出成分分带及不平衡和交代结构;长石主要为钾长石和钠长石,及少量斜长石,钾长石主要呈块体产出,钠长石呈细粒→叶片状→薄片状产出。本次研究通过电子探针(EMPA)和激光剥蚀等离子质谱(LA-ICP-MS)获得3号脉各结构带云母和长石的主微量成分。3号脉云母具有高Li(249×10-6~35932×10-6)、Rb(1240×10-6~22825×10-6)、Cs(35.9×10-6~13980×10-6)、Ta(13.3×10-6~447×10-6)含量、低K/Rb值(4.23~59.4)和K/Cs值(6.53~2368),钾长石具有低K/Rb值(35.4~1865),且由外向内,随K/Rb值降低,云母的Li、Rb、Cs、F、Ta含量升高,表明3号脉是一个由外向内结晶的分异演化程度较高的伟晶岩脉。另外,连续相邻结构带中云母和长石的主微量成分呈振荡变化,该现象主要受熔体不混溶过程的控制,也受矿物结晶不平衡影响,而熔体不混溶过程也是控制3号脉结构分带的机制之一。外部带(I-IV带)和内部带(V-VIII带)的云母和碱性长石在成分(FeO、Li、Rb、Cs、F、Ta含量和K/Rb值及K/Cs值)和结构(不平衡和交代结构)上具有明显差异,内部带演化程度明显加大,流体组分比例升高,表明体系由以熔体为主的阶段(外部带)进入以熔流体为主相对不稳定的阶段(外部带)。结合野外观察的证据,促使体系在IV带和V带间发生突然转变而进入熔流体阶段的是一个泄压事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号