首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout much of Earth's history, marine carbonates have represented one of the most important geological archives of environmental change. Several pivotal events during the Phanerozoic, such as mass extinctions or hyperthermal events have recently been associated with ocean acidification. Nevertheless, well‐defined geological proxies for past ocean acidification events are, at best, scarce. Here, experimental work explores the response of bivalve shell ultrastructure and isotope geochemistry (δ13C, δ18O and δ26Mg) to stressful environments, in particular to sea water acidification. In this study, the common blue mussel, Mytilus edulis, was cultured (from early juvenile stages to one year of age) at four pH regimes (pHNBS 7·2 to pH 8·0). Shell growth rate and ultrastructure of mainly the calcitic portion of the shells were compared between experimental treatments. Specimens exposed to low‐pH environments show patches of disordered calcitic fibre orientation in otherwise well‐structured shells. Furthermore, the electron backscattered diffraction analyses reveal that, under acidified conditions, the c‐axis of the calcite prisms exhibits a bimodal or multi‐modal distribution pattern. Similar shell disorder patterns have been reported from mytilids kept under naturally acidified sea water conditions. In contrast, this study found no evidence that different pH regimes affect shell carbon, oxygen or magnesium isotope ratios. Based on these observations, it is proposed that: (i) stressful environments, in this case low sea water pH, predictably affect bivalve biomineralization patterns; and (ii) these findings bear potential as a novel (petrographic) proxy for ancient sea water acidification. An assessment of the applicability of these data to well‐preserved fossil shell material from selected time intervals requires additional work.  相似文献   

2.
The stable isotopic composition of the bivalve shell has been widely used to reconstruct the pa-laeo-climate and palaeo-environment. The climatic and environmental significance of carbon isotopic composition of the bivalve shell is still in dispute, and incorporation of metabolic carbon can obscure carbon isotope records of dis-solved inorganic carbon. This study deals with freshwater bivalve, Corbicula fluminea aragonite shell. The results indicated that the δ13C values of bivalve shells deposited out of equilibrium with the host water and showed an onto-genic decrease, indicating that there are metabolic effects and more metabolic carbon is incorporated into larger shells. The proportion of metabolic carbon of shells varies between 19.8% and 26.8%. However, δ13CS can still be used as qualitative indicators of δ13CDIC and environmental processes that occurred during shell growth.  相似文献   

3.
The threshold of motion of non-fragmented mollusc shells was studied for the first time under oscillatory flow. In this regard, flume experiments were used to investigate the threshold of motion of three bivalve and three gastropod species, two typical mollusc classes of coastal coquina deposits. The sieve diameters ranged from 2·0 to 15·9 mm. These experiments were performed on a flat-bottom setup under regular non-breaking waves (swell) produced by a flap-type wave generator. The critical Shields values for each species of mollusc were plotted against the sieve and nominal diameter. Moreover, the dimensionless Corey shape factor of the shells was evaluated in order to investigate the effect of mollusc shell shapes on the threshold of motion. According to their critical Shields parameter, the mollusc threshold data under oscillatory flow present smaller values than the siliciclastic sediments when considering their sieve diameter. In addition, the mollusc datasets are below the empirical curves built from siliciclastic grain data under current and waves. When considering the nominal diameter, the critical Shields parameter increases and the mollusc data are closer to siliciclastic sediments. Bivalves, which have a flat-concave shape (form factor: 0·27 to 0·37), have a higher critical Shields parameter for smaller particles and more uniform datasets than the gastropod scattered data, which have a rounded shape (form factor: 0·58 to 0·62) and have varied morphologies (ellipsoidal, conical and cubic). The comparison between previous current-driven threshold data of bioclastic sediment motion and the data of mollusc whole shells under oscillatory flow shows a fair correlation on the Shields diagram, in which all datasets are below the mean empirical curves for siliciclastic sediments. These findings indicate that the shape effect on the transport initiation is predominant for smaller shells. The use of the nominal diameter is satisfactory to improve the bioclastic and siliciclastic data correlation.  相似文献   

4.
Dreissena polymorpha is an exotic freshwater bivalve species which was introduced into the Great Lakes system in the fall of 1985 through the release of ballast water from European freighters. Utilizing individual growth rings of the shells, the stable isotope distribution (δ18O and δ13C) was determined for the life history of selected samples which were collected from the western basin of Lake Erie. These bivalves deposit their shell in near equilibrium with the ambient water and thus reflect any annual variation of the system in the isotopic records held within their shells. Observed values for δ18O range from -6.64 to –9.46‰ with an average value of –7.69‰ PDB, while carbon values ranged from –0.80 to –4.67‰ with an average value of –1.76‰ PDB. Dreissena polymorpha shells incorporate metals into their shells during growth. Individual shell growth increments were analyzed for Pb, Fe, Mg, Mn, Cd, Cu, and V concentrations. The shells show increased uptake of certain metals during periods of isotopic enrichment which correspond with warmer water temperatures. Since metals are incorporated into the shells, the organism may be useful as a biomonitor of metal pollution within aquatic environments. Received: 31 October 1996 · Accepted: 21 May 1997  相似文献   

5.
Detailed study of marine shales (the Ostracod zone) within a Cretaceous, third-order transgressive-regressive sequence in the Alberta Foreland Basin reveals a systematic association between shell beds and parasequence-scale flooding surfaces, including surfaces of maximum flooding. The Ostracod zone (a subsurface lithostratigraphic unit known as the Calcareous Member in outcrop) consists of 10-20 m of black shale and bioturbated sandstones with many thin, fossiliferous limestones. Parasequences (shallowing-up cycles 2–3 m thick) were delineated within this transgressive unit based on lithology, sedimentary structures, degree of bioturbation, dinoflagellate diversity, total organic carbon and carbon/sulphur ratios; many flooding surfaces are firmgrounds or hardgrounds. Shell-rich limestones occur in three different positions relative to these flooding surfaces, and each has a distinctive bioclastic fabric and origin. (i) Base-of-parasequence shell beds (BOPs) lie on or just above flooding surfaces in the deepest water part of a parasequence; they are thin (up to a few centimetres), graded or amalgamated skeletal packstones/wackestones composed of well-sorted granular shell, and are interpreted as hydraulic event concentrations of exotic shell debris. (ii) Top-of-parasequence shell beds (TOPs) are capped by flooding surfaces at the top, shallowest water part of a parasequence; they typically are several decimetres thick, are physically amalgamated packstones/grainstones or bioturbated wackestones, and contain abundant whole as well as comminuted shells; these are composite, multiple-event concentrations of local shells. (iii) Mid-sequence shell beds rest on as well as are capped by firmgrounds or hardgrounds, and are intercalated between parasequences in the deepest water part of the larger sequence; they are laterally extensive lime mudstones a few decimetres thick, with sparse shells in various states of dissolution, recrystallization and replacement; these beds are terrigenous-starved hiatal concentrations and record maximum flooding within the Ostracod zone. Offshore sections of the Ostracod zone typically contain several starved mid-sequence shell beds, underscoring the difficulty of identifying a single‘maximum flooding surface’ within a third-order sequence.  相似文献   

6.
Experimental studies of subcritical, unidirectional flow over upper stage plane beds of medium grained sand reveal the ubiquitous presence of low amplitude bedwaves. Flow depth was 0·11 m, mean flow velocities were 0·86–1·0 m s?1, shear velocities were 0·058–0·71 m s?1 and dimensionless shear stresses were 0·56–0·87. Bedwaves are asymmetrical in profile and range from 0·75 to 11 mm in height (mainly 2–6 mm), from 0·7 to 1·3 m in wavelength and have mean celerities of 10 mm s?1. Flow records suggest that the bedwaves are associated with accelerating flow over the bedwave crests and flow which decelerates and diverges laterally over the troughs. High resolution bed profiling during aggradation of the bed combined with subsequent box coring illustrates that these bedwaves are responsible for the planar laminae characteristic of upper stage plane beds. Lamina preservation is dependent upon the mean aggradation rate and the sequence of bedwaves of different height crossing any point; individual laminae are more readily preserved at higher aggradation rates where the possibility of reworking by later bedwaves is reduced. Laminae are recognized by small changes in grain size and commonly a fining upwards at the top of laminae which is generated by fine grained material infiltrating a lower lamina in the leeside of a bedwave.  相似文献   

7.
H. Holail  R. Tony 《GeoJournal》1995,35(4):481-486
The stable isotopic composition (13C and 18O) and elemental (Sr and Mg) of marine molluscs are presented for Carditacea and Solenacea shells collected off the Mediterranean coast of Egypt. Based on shell microstructures and mineralogy, the bivalve shells are preserved in their original mineralogy and chemistry.The Sr and Mg concentrations of the bivalve shells have mean values of 1960 ppm and 226 ppm respectively. The stable isotopic composition generally show high values of 18O and 13C. The 18O values range from +0.1 to –1.8 PDB and most shells are highly enriched in13C; averaging +2.5 PDB. These elemental and isotopic signatures are analogous to modern marine bivalves from other localities.The oxygen and carbon isotopes, together with the calculated temperatures, suggest that the aragonitic bivalve shells were precipitated in isotopic equilibrium from warm marine waters.  相似文献   

8.
A suite of elements (B, Na, Mg, S, K, Ca, V, Mn, Cr, Sr, and Ba) was measured in aragonitic shells of the estuarine bivalve Corbula amurensis, the Asian clam, using the Sensitive High-Resolution Ion MicroProbe with Reverse Geometry (SHRIMP RG). Our initial intent was to explore potential geochemical proxy relationships between shell chemistry and salinity (freshwater inflow) in northern San Francisco Bay (SFB). In the course of this study we observed variations in shell trace element to calcium ([M]/Ca) ratios that could only be attributed to internal biological processes. This paper discusses the nature and sources of internal trace element variability in C. amurensis shells related to the shell organic fraction and shell calcification rates. The average organic content of whole C. amurensis shells is 19%. After treating whole powdered shells with an oxidative cleaning procedure to remove organic matter, shells contained on average 33% less total Mg and 78% less total Mn. Within our analytical uncertainty, Sr and Ba contents were unchanged by the removal of organic matter. These results show that aragonitic C. amurensis shells have a large component of non-lattice-bound Mg and Mn that probably contribute to the dissimilarity of [M]/Ca profiles among five same-sized shells. Non-lattice-bound trace elements could complicate the development and application of geochemical proxy relationships in bivalve shells. Because B, Ba and Sr occur exclusively in shell aragonite, they are good candidates for external proxy relationships. [M]/Ca ratios were significantly different in prismatic and nacreous aragonite and in two valves of the same shell that had different crystal growth rates. Some part of these differences can be attributed to non-lattice-bound trace elements associated with the organic fraction. The differences in [M]/Ca ratios were also consistent with the calcification rate-dependent ion transport model developed by Carré et al. [Carré M., Bentaleb I., Bruguier O., Ordinola E., Barrett N. T. and Fontugne M. (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim. Cosmochim. Acta70, 4906-4920] which predicts that [M]/Ca ratios increase as calcification rates increase and Ca2+ channel specificity decreases. This result, in combination with the possibility that there were ontogenetic variations in growth rates among individuals younger than 2 years, underscores the need to develop an independent age model for C. amurensis shells. If growth-rate effects on lattice-bound [M]/Ca ratios can be constrained, it may yet be possible to develop high-resolution geochemical proxies for external solution chemistry in low-salinity regions of SFB.  相似文献   

9.
Mussel shells have been used in a number of paleoecological and environmental studies. The interpretation of stable carbon isotopic composition of shell material is still controversial. The carbon for shell carbonate precipitation can either be derived from ambient dissolved inorganic carbon (DIC), with shells recording environmental signals, or from metabolic CO2, with the potential to disguise environmental signals. To gain insight into this question, we investigated four nearly 100-yr long-term records of aragonite shells from an extant freshwater bivalve species, the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Single growth increments of the outer prismatic and the inner nacreous zones were successfully and easily separated with a simple heat treatment for chronological analyses of δ13C in single layers of each zone. Autocorrelation and semivariance statistical methods reveal that mussels show distinct individual signal patterns, which extend up to 25 yr. Signal patterns are reliably reproduced with replicate samples from defined layers within one shell and show similar patterns with a slight offset for inner nacreous and outer prismatic layers for individual animals. Mussels exposed to the same environmental conditions exhibit distinct and contradictory signature patterns, which do not match between individuals. This observation can only be explained by strong metabolic influences on shell precipitation. Environmental changes in pH, temperature, electric conductivity and atmospheric carbon signature had no or little (<5%) influence, whereas body tissue protein and body tissue δ13C signatures negatively correlated with the youngest produced shell δ13C signatures, indicating that respiration causes a preferential loss of light isotopes from body mass and an inverse enrichment in shell aragonite. Hence, the shells of the freshwater pearl mussel yield a long-term record of metabolic activity, whereas the use of δ13C in these shells as recorder for environmental signals is questionable. This may also be true for shells from other species, for which metabolic carbon incorporation has been acknowledged.  相似文献   

10.
The aim of this study was to determine how Unio bivalve shells fragment within the channel of the Sakmara River (southern Urals, Russia). The Sakmara River has an abundant bivalve population and a highly variable flow regime which, at low flow, allowed much of the channel bed to be examined. A large data set of 1013 shells (Unio sp.) was examined and these were shown to have consistent patterns of orientation, aspect, shell abrasion, perforation and fracture. The close spatial relationship between areas of shell abrasion, shell perforation and shell fracture showed that they form part of a continuum whereby areas of abrasion evolve into perforations and perforations coalesce and enlarge into fractures. The mechanism of shell damage proposed is one of abrasion in place, whereby the shell remains stationary on the surface of the point bar and is impacted by bedload. Underpinning this process are the hydrodynamic properties of the bivalve shell, with consistency in the orientation and aspect of the valve in a flowing current producing consistency in the distribution of damage on the shell surface. Valves preferentially lie in a convex‐up position and orientate in the flow such that the umbo faces upstream. The elevated, upstream‐facing umbo region is exposed to particle impact and is the first to be abraded and perforated. The vulnerability of the umbo to perforation is greatly increased by the thinness of the shell at the umbo cavity. The in situ abrasion process is enhanced by the development of an armoured gravel bed which restricts valve mobility and maintains shells within the abrasion zone at the sediment–water interface. The in situ abrasion process shows that broken shells are not a reliable indicator of long distance transport. The study also raises the issue that tumbling barrel experiments, which are generally used to simulate shell abrasion, will not replicate the type of directionally focused sand‐blasting which appears to be the principal cause of shell fragmentation in the Sakmara River.  相似文献   

11.
The bioaccumulation of trace metals in the carbonate shells of mussel and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin). Mineralogical analysis showed that the carbonate skeletons of the mytilid mussel Bathymodiolus sp. and the vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for the content of a variety of elements in the bivalve carbonate shells from various hydrothermal vent sites. The analysis of the chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from the mollusk biotopes revealed the influences of environmental conditions and some biological parameters on the bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by a factor of 20–30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that the essential elements Fe, Mn, Ni, and Cu were more actively accumulated during the early ontogeny of the shells. The high concentration factors of most metals (n × 102n × 104) indicate an efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on the shell surface was estimated to be no higher than 50% of the total amount, varying from 14% for Fe to 46% for Mn.  相似文献   

12.
Trace elements in calcareous organisms have been widely used for paleoclimatic studies. However, the factors controlling their incorporation into mollusc shells are still unclear. We studied here the Sr, Mg, Ba and Mn serial records in the shells of two aragonitic marine bivalve species: Mesodesma donacium and Chione subrugosa from the Peruvian Coast. The elemental concentrations were compared to local temperature and salinity records. The relationships with crystal growth rate G were investigated thanks to well defined periodic growth structures providing a precise shell chronology. Our results show that for both species, environmental parameters only have minor influence, whereas crystal growth rate strongly influences trace elements concentrations, especially for Sr (explaining up to 74% of the variance). The relationship between G and Sr/Ca exhibits variability among the shells as well as inside the shells. For a same growth rate value, Sr/Ca values are higher in more curved shell sections, and the growth rate influence is stronger as well. We show that intercellular and Ca2+-pump pathways cannot support the calcification Ca2+ flux, leading us to propose an alternative mechanism for ionic transport through the calcifying mantle, implying a major role for calcium channels on mantle epithelial cell membranes. In this new calcification model, Sr/Ca shell ratios is determined by Ca2+-channel selectivity against Sr2+, which depends (i) on the electrochemical potential imposed by the crystallisation process and (ii) on the Ca2+-channel density per surface unit on mantle epithelia.  相似文献   

13.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   

14.
The relationship between potential elemental proxies (Mg/Ca, Sr/Ca and Mn/Ca ratios) and environmental factors was investigated for the bivalve Pecten maximus in a detailed field study undertaken in the Menai Strait, Wales, U.K. An age model constructed for each shell by comparison of measured and predicted oxygen-isotope ratios allowed comparison on a calendar time scale of shell elemental data with environmental variables, as well as estimation of shell growth rates. The seasonal variation of shell Mn/Ca ratios followed a similar pattern to one previously described for dissolved Mn2+ in the Menai Strait, although further calibration work is needed to validate such a relationship. Shell Sr/Ca ratios unexpectedly were found to co-vary most significantly with calcification temperature, whilst shell Mg/Ca ratios were the next most significant control. The temporal variation in the factors that control shell Sr/Ca ratios strongly suggest the former observation most likely to be the result of a secondary influence on shell Sr/Ca ratios by kinetic effects, the latter driven by seasonal variation in shell growth rate that is in turn influenced in part by seawater temperature. P. maximus shell Mg/Ca ratio to calcification temperature relationships exhibit an inverse correlation during autumn to early spring (October to March-April) and a positive correlation from late spring through summer (May-June to September). No clear explanation is evident for the former trend, but the similarity of the records from the three shells analysed indicate that it is a real signal and not a spurious observation. These observations confirm that application of the Mg/Ca proxy in P. maximus shells remains problematic, even for seasonal or absolute temperature reconstructions. For the range of calcification temperatures of 5-19 °C, our shell Mg/Ca ratios in P. maximus are approximately one-fourth those in inorganic calcite, half those in the bivalve Pinna nobilis, twice those in the bivalve Mytilus trossulus, and four to five times higher than Mg/Ca ratios in planktonic and benthonic foraminifera. Our findings further support observations that Mg/Ca ratios in bivalve shell calcite are an unreliable temperature proxy, as well as substantial taxon- and species-specific variation in Mg incorporation into bivalves and other calcifying organisms, with profound implications for the application of this geochemical proxy to the bivalve fossil record.  相似文献   

15.
Late Miocene platform carbonates from Nijar, Spain, have been extensively dolomitized. Limestones are present in the most landward parts of the platform, in stratigraphically lower units and topographically highest outcrops, suggesting that dolomitizing fluids were derived from the adjacent Nijar Basin. The dolomite crystals range from <10 to ≈100 μm existing as both replacements and cements. Na, Cl and SO4 concentrations in the dolomites range from 200 to 1700 p.p.m., 250–650 p.p.m., and 600–7000 p.p.m., respectively, comparable with other Tertiary and modern brine dolomite values, and also overlapping values from mixing-zone dolomites. Sr concentrations range between 50 and 300 p.p.m., and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 7× seawater brine to freshwater ratios. The δ18O and δ13C of the dolomites range from ?1·0 to +4·2‰ PDB, and ?4·0 to +2·0‰ PDB, respectively. 87Sr/86Sr values (0·70899–0·70928) of the dolomites range from late Miocene seawater to values greater than modern seawater. Mixtures of freshwater with seawater and evaporative brines probably precipitated the Nijar dolomites. Modelled covariations of molar Sr/Ca vs. δ18O and Na/Ca vs. δ18O from these mixtures are consistent with those of the proposed Nijar dolomitizing fluids. Complete or partial dolomite recrystallization is ruled out by well preserved CL zoning, nonstoichiometry and quantitative water–rock interaction modelling of covariations of Na vs. Sr and δ18O vs. δ13C. The possibility of multiple dolomitization events induced by evaporative brines, seawater and freshwater, respectively, is consistent with mineral-mineral mixing modelling. The basin-derived dolomitizing brines probably mixed with freshwater in the Nijar Basin or mixed with fresh groundwater in the platform, and were genetically related either to deposition of the Yesares gypsum or the Feos gypsum. Dolomitization occurred during either the middle Messinian or the early upper Messinian. Nijar dolomitization models may be applicable to dolomitization of other late Miocene platform carbonates of the western Mediterranean. Moreover, the Nijar models may offer an analogue for more ancient evaporite-absent platform carbonates fringing evaporite basins.  相似文献   

16.
The Marnoso Arenacea Formation provides the most extensive correlation of individual flow deposits (beds) yet documented in an ancient turbidite system. These correlations provide unusually detailed constraints on bed shape, which is used to deduce flow evolution and assess the validity of numerical and laboratory models. Bed volumes have an approximately log‐normal frequency distribution; a small number of flows dominated sediment supply to this non‐channelized basin plain. Turbidite sandstone within small‐volume (<0·7 km3) beds thins downflow in an approximately exponential fashion. This shape is a property of spatially depletive flows, and has been reproduced by previous mathematical models and laboratory experiments. Sandstone intervals in larger‐volume (0·7–7 km3) beds have a broad thickness maximum in their proximal part. Grain‐size trends within this broad thickness maximum indicate spatially near‐uniform flow for distances of ∼30 km, although the flow was temporally unsteady. Previous mathematical models and laboratory experiments have not reproduced this type of deposit shape. This may be because models fail to simulate the way in which near bed sediment concentration tends towards a constant value (saturates) in powerful flows. Alternatively, the discrepancy may be the result of relatively high ratios of flow thickness and sediment settling velocity in submarine flows, together with very gradual changes in sea‐floor gradient. Intra‐bed erosion, temporally varying discharge, and reworking of suspension fallout as bedload could also help to explain the discrepancy in deposit shape. Most large‐volume beds contain an internal erosion surface underlain by inversely graded sandstone, recording waxing and waning flow. It has been inferred previously that these characteristics are diagnostic of turbidites generated by hyperpycnal flood discharge. These turbidites are too voluminous to have been formed by hyperpycnal flows, unless such flows are capable of eroding cubic kilometres of sea‐floor sediment. It is more likely that these flows originated from submarine slope failure. Two beds comprise multiple sandstone intervals separated only by turbidite mudstone. These features suggest that the submarine slope failures occurred as either a waxing and waning event, or in a number of stages.  相似文献   

17.
Seasonal temperature patterns may have changed through time in response to current global warming. However, the temporal resolution of available proxy records is not sufficient to quantify paleotemperature seasonality prior to anthropogenic forcing of the climate. In the present study, we reconstructed seasonal and inter-annual temperature patterns of the North Sea during the last 140 years, the Allerød Interglacial and the Late Medieval Climate Optimum using sclerochronological and δ18Oaragonite data from bivalve shells, Arctica islandica. On average, the climate during 1278–1353 AD was ca. 1.1°C colder and seasonality was ca. 60% less than today. During the Allerød, long-term temperatures remained about 3.2°C below present values, and absolute summer and winter anomalies were ca. ?4 and ?2.7°C, respectively. However, seasonality was statistically indistinguishable from today. Long-term average temperatures compare well with existing data for the Late Medieval and Allerød, but detailed information on seasonality during the studied time intervals has never been presented before. Our data also demonstrated that annual instrumental and δ18Oaragonite-derived temperatures did not always match. This difference is explained by (1) NAO-driven salinity changes, which influence the temperature estimation from δ18Oaragonite and (2) food-driven changes in growth rates; portions of the shell that formed more rapidly are overrepresented in carbonate samples. Our study indicated that individual bivalve shells can open discrete, near-century long, ultra-high-resolution windows into the climate past. Such information can be vital for testing and verifying numerical climate models.  相似文献   

18.
To evaluate the potential of using surficial shell accumulations for paleoenvironmental studies, an extensive time series of individually dated specimens of the marine infaunal bivalve mollusk Semele casali was assembled using amino acid racemization (AAR) ratios (n = 270) calibrated against radiocarbon ages (n = 32). The shells were collected from surface sediments at multiple sites across a sediment-starved shelf in the shallow sub-tropical São Paulo Bight (São Paulo State, Brazil). The resulting 14C-calibrated AAR time series, one of the largest AAR datasets compiled to date, ranges from modern to 10,307 cal yr BP, is right skewed, and represents a remarkably complete time series: the completeness of the Holocene record is 66% at 250-yr binning resolution and 81% at 500-yr binning resolution. Extensive time-averaging is observed for all sites across the sampled bathymetric range indicating long water depth-invariant survival of carbonate shells at the sediment surface with low net sedimentation rates. Benthic organisms collected from active depositional surfaces can provide multi-millennial time series of biomineral records and serve as a source of geochemical proxy data for reconstructing environmental and climatic trends throughout the Holocene at centennial resolution. Surface sediments can contain time-rich shell accumulations that record the entire Holocene, not just the present.  相似文献   

19.
Spencer Gulf is a large (ca 22 000 km2), shallow (<60 m water depth) embayment with active heterozoan carbonate sedimentation. Gulf waters are metahaline (salinities 39 to 47‰) and warm‐temperate (ca 12 to ?28°C) with inverse estuarine circulation. The integrated approach of facies analysis paired with high‐resolution, monthly oceanographic data sets is used to pinpoint controls on sedimentation patterns with more confidence than heretofore possible for temperate systems. Biofragments – mainly bivalves, benthic foraminifera, bryozoans, coralline algae and echinoids – accumulate in five benthic environments: luxuriant seagrass meadows, patchy seagrass sand flats, rhodolith pavements, open gravel/sand plains and muddy seafloors. The biotic diversity of Spencer Gulf is remarkably high, considering the elevated seawater salinities. Echinoids and coralline algae (traditionally considered stenohaline organisms) are ubiquitous. Euphotic zone depth is interpreted as the primary control on environmental distribution, whereas seawater salinity, temperature, hydrodynamics and nutrient availability are viewed as secondary controls. Luxuriant seagrass meadows with carbonate muddy sands dominate brightly lit seafloors where waters have relatively low nutrient concentrations (ca 0 to 1 mg Chl‐a m?3). Low‐diversity bivalve‐dominated deposits occur in meadows with highest seawater salinities and temperatures (43 to 47‰, up to 28°C). Patchy seagrass sand flats cover less‐illuminated seafloors. Open gravel/sand plains contain coarse bivalve–bryozoan sediments, interpreted as subphotic deposits, in waters with near normal marine salinities and moderate trophic resources (0·5 to 1·6 mg Chl‐a m?3) to support diverse suspension feeders. Rhodolith pavements (coralline algal gravels) form where seagrass growth is arrested, either because of decreased water clarity due to elevated nutrients and associated phytoplankton growth (0·6 to 2 mg Chl‐a m?3), or bottom waters that are too energetic for seagrasses (currents up to 2 m sec?1). Muddy seafloors occur in low‐energy areas below the euphotic zone. The relationships between oceanographic influences and depositional patterns outlined in Spencer Gulf are valuable for environmental interpretations of other recent and ancient (particularly Neogene) high‐salinity and temperate carbonate systems worldwide.  相似文献   

20.
Upper Pliocene dolomites (‘white earth’) from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg‐carbonates (dolomite unit) occur as a 3·5‐ to 4‐m‐thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1‐ to 2‐μm‐sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca‐dolomite (51–54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0·27 to 0·48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. δ18O‐ and δ13C‐values in dolomites range from ?3·07‰ to 5·40‰ PDB (mean=0·06, σ=1·75) and from ?6·34‰ to ?0·39‰ PDB (mean=?3·55, σ=1·33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between δ18O and δ13C for dolomite is extremely low and negative (r=?0·05), whereas it is higher and positive (r=0·47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3?/CO32? groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi‐arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号