首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present the first light curves and pulsation analysis results for V729 Aql and two newly discovered eclipsing binaries, namely USNO-A2.0 0975-17281677 and USNO-A2.0 1200-03937339. Frequency search was applied on the residuals of their light curves and the results showed that their primary components pulsate in multiperiodic modes and lie well inside the frequency and temperature range of δ Scuti stars. Moreover, for USNO-A2.0 1200-03937339 two frequencies inside the γ Dor frequency range were also detected, but their origin is discussed. The photometric models of USNO-A2.0 1200-03937339 and V729 Aql are also presented, while their absolute parameters as well as the evolutionary status of their components were roughly estimated.  相似文献   

2.
We combined data from the Two-Micron All Sky Survey (2MASS) and USNO-A2.0 catalogues in order to derive the absolute proper motions of about 280 million stars distributed all over the sky excluding a small region near the Galactic Centre, in the magnitude range  12 < B < 19 mag  . The proper motions were derived from the 2MASS Point Sources and USNO-A2.0 catalogue positions with a mean epoch difference of about 45 years for the Northern hemisphere and about 17 years for the Southern one. The zero-point of the absolute proper motion frame (the 'absolute calibration') was specified with the use of about 1.45 million galaxies from 2MASS. Most of the systematic zonal errors inherent in the USNO-A2.0 catalogue were eliminated before the calculation of proper motions. The mean formal error of absolute calibration is less than 1 mas yr−1. The XPM Catalogue will be available via CDS in Strasbourg during 2010. The generated catalogue contains the International Celestial Reference System positions of stars for the J2000 epoch, original absolute proper motions, as well as   B , R , J , H   and K magnitudes. A comparison of the proper motions obtained in this work with the data of other recent catalogues of quasars was fulfilled.  相似文献   

3.
The first light curve solutions of the binary systems V1370 Tau and QQ Boo are presented. The periodic changes are calculated, and a new ephemeris presented for each of these two binary systems. O-C analysis is performed using the MCMC method in OCFit code. The changing rate of period was measured as dP/dt= 0.2423 days/year for V1370 Tau and dP/dt= -0.1363 days/year for QQ Boo. The light curve solutions suggest that V1370 Tau is a weak-contact eclipsing binary system with a photometric mass ratio q = 0.829, and that the corresponding fillout factor is 11.06%. Furthermore, it is suggested that the QQ Boo binary system is also a weak-contact W UMa eclipsing binary with a photometric mass ratio q = 0.831, and that its fillout factor equals 10.26%. The light curve solutions require cold spots. Utilizing the Wilson-Devinney code the photometric and geometric parameters of the systems are determined. The distance of both V1370 Tau and QQ Boo are calculated according to the estimated absolute parameters as 159.95 ± 23 pc and 309.03 ± 25 pc, respectively, which are in a good agreement with the distance values derived from the Gaia DR2 parallax within one standard deviation. Moreover, the positions of their components on the H-R diagram are represented.  相似文献   

4.
In a previous paper, using Eggleton's stellar evolution code, we have discussed the structure and evolution of low-mass W Ursae Majoris (W UMa) type contact binaries with angular momentum loss owing to gravitational radiation or magnetic braking. We find that gravitational radiation is almost insignificant for cyclic evolution of low-mass W UMa type systems, and it is possible for angular momentum to be lost from W UMa systems in a magnetic stellar wind. The weaker magnetic activity shown by observations in W UMa systems is likely caused by the lower mass of the convective envelopes in these systems than in similar but non-contact binaries. The spin angular momentum cannot be neglected at any time for W UMa type systems, especially for those with extreme mass ratios. The spin angular momenta of both components are included in this paper and they are found to have a significant influence on the cyclic evolution of W UMa systems. We investigate the influence of the energy transfer on the common convective envelopes of both components in detail. We find that the mass of the convective envelope of the primary in contact evolution is slightly more than that in poor thermal contact evolution, and that the mass of the convective envelope of the secondary in contact evolution is much less than that in poor thermal contact evolution. Meanwhile, the rate of angular momentum loss of W UMa type systems is much lower than that of poor thermal contact systems. This is indeed caused by the lower masses of the convective envelopes of the components in W UMa type systems. Although the models with angular momentum loss for W UMa systems exhibit cyclic evolution, they seem to show that a W UMa system cannot continue this type of cyclic evolution indefinitely, and it might coalesce into a fast-rotating star after about 1200 cycles of evolution (about  7.0 × 109 yr  ).  相似文献   

5.
We present the first CCD sets of complete light curves for two W Ursae Majoris Systems, UCAC3 276-106147 and NSVS 7377756. These light curves are here analyzed and modelled using the latest version of the Wilson-Devinney Code. We found that UCAC3 276-106147 is a W-subtype shallow-contact eclipsing binary (fill-out factor 7.5%), with a mass ratio of q = 2.88 (1/q = 0.347), a small temperature difference between the components of about ΔT =200K. NSVS 7377756 is an H-subtype binary system with a high mass ratio of q = 1.09 (1/q = 0.947), a weak degree of contact factor f = 3.8% and a temperature difference between the components of ΔT = 398 K. The light curves of both the systems appear to be unspotted. By using our 4 and 7 times of minimum light and the 30 and 104 ToMs extract from the SWASP observations, respectively for UCAC3 276-106147 and NSVS 7377756, the orbital periods are here revised. The elements obtained from this analysis are used to compute the physical parameters of the systems combining our photometric solution with the 3-D correlation obtained for contact binaries by Gazeas (2009). Based on these estimated parameters the evolutionary state of the components of the systems is investigated and discussed.  相似文献   

6.
The absolute proper motions of about 275 million stars from the Kharkov XPM catalog have been obtained by comparing their positions in the 2MASS and USNO-A2.0 catalogs with an epoch difference of about 45 yr for northern-hemisphere stars and about 17 yr for southern-hemisphere stars. The zero point of the system of absolute proper motions has been determined using 1.45 million galaxies. The equatorial components of the residual rotation vector of the ICRS/UCAC2 coordinate system relative to the system of extragalactic sources have been determined by comparing the XPM and UCAC2 stellar proper motions: ω x,y,z = (−0.06, 0.17, −0.84) ± (0.15, 0.14, 0.14) mas yr−1. These parameters have been calculated using about 1 million faintest UCAC2 stars with magnitudes R UCAC2 > 16 m and J > 14 m . 7, for which the color and magnitude equation effects are negligible.  相似文献   

7.
Spherical mass density models are used to fit the central surface brightness profiles of early-type galaxies which are generated from Nuker law parameters obtained from the literature. The mass density and the corresponding potential are in an analytical form. It is shown that only a few mass density components are necessary to obtain a good fit and that for all power-law galaxies and for the core galaxies that we consider, most or all of the mass density components must have cusps to provide good fits. The applied quadratic programming fitting allows for a method of deprojection, which is reliable and convenient. The results can be used directly for further dynamical modelling.  相似文献   

8.
This paper deals with ellipsoidal mass distributions made by concentric, coaxial, and similar shells, whose density is specified for two special situations both including the whole range between the limiting cases of homogeneous systems, on one side, and Roche generalized systems, on the other side. The components of the related inertia tensor are calculated and the dependence of the spin growth on the density distribution is shown, concerning tidal transfer of angular momentum to both virialized proto-galaxies and encountering galaxies.  相似文献   

9.
In this paper, we present the analysis of the stellar binary system HIP 43766 to determine its properties. We rely on dynamical modeling and atmospheric modeling with recent data to determine the orbital solution and the physical properties of the system. There is a consistency between observed and synthetic photometry obtained using atmospheric modeling. The calculated dynamical mass sum of the system ranged between 1.691 and 2.609 solar masses, while it ranges between 2.0 and 2.1 as estimated utilizing atmospheric modeling. This could be due to inaccuracy in estimating the orbit, which could be modified with future observations with more relative positional measurements. The parameters of the system and the position of the components on the evolutionary tracks show that the system consists of F5 and G5 subgiant stars, mostly formed by fragmentation. A dynamical mass sum is predicted for the system.  相似文献   

10.
The first light curve solutions of the stars EW and HN in the Pisces constellation are presented. Photometry, and its’ periodic changes are calculated and discussed. The analysis of the O-C diagram is done by the MCMC approach in the OCFit code and a new ephemeris is provided for the two binary systems. The results show that EW Psc is a near contact eclipsing binary system with a photometric mass ratio q = 0.587, and the fillout factor is -0.034 and -0.018 for the primary and secondary components, respectively. The solution results also show that the system HN Psc is a weak-contact W UMa eclipsing binary with a photometric mass ratio q = 0.853, and with a fillout factor of 5.6%. The light curves solutions required a cold spot to account for the O'Connell effect.  相似文献   

11.
Photometric solutions of four new discovered W UMa-type binaries were carried out for the first time by using the 2003 version of the W-D program. It is discovered that all of the four systems are over-contact binaries. Two binaries, GSC 0804-0118 and GSC 2936-0478, are of A-subtype, while two other binaries, GSC 1848-1264 and GSC 0619-0232, are of W-subtype. From our solutions, the fundamental orbital and physical parameters were determined. For GSC 0619-0232 and GSC 2936-0478, the asymmetries of the light curves (i.e., the O'Connell effect) were explained by the presence of dark spots on the more massive components. Our photometric results reveal that GSC 0619-0232 is an important and interesting system. It is a W-type over-contact binary with a low mass ratio of q = 0.100 and a high over-contact degree of f = 93.4%, which suggests that GSC 0619-0232 may be evolved into a single rapid-rotating star.  相似文献   

12.
We present our findings based on a detailed analysis of the binaries of the Hyades, in which the masses of the components are well known. We fit the models of the components of a binary system to observations so as to give the observed total V and B − V of that system and the observed slope of the main sequence in the corresponding parts. According to our findings, there is a very definite relationship between the mixing-length parameter and the stellar mass. The fitting formula for this relationship can be given as  α= 9.19( M /M− 0.74)0.053− 6.65  , which is valid for stellar masses greater than  0.77 M  . While no strict information is gathered for the chemical composition of the cluster, as a result of degeneracy in the colour–magnitude diagram, by adopting   Z = 0.033  and using models for the components of 70 Tau and θ2 Tau we find the hydrogen abundance to be   X = 0.676  and the age to be 670 Myr. If we assume that   Z = 0.024  , then   X = 0.718  and the age is 720 Myr. Our findings concerning the mixing-length parameter are valid for both sets of the solution. For both components of the active binary system V818 Tau, the differences between radii of the models with   Z = 0.024  and the observed radii are only about 4 per cent. More generally, the effective temperatures of the models of low-mass stars in the binary systems studied are in good agreement with those determined by spectroscopic methods.  相似文献   

13.
Stellar rotation depends on different parameters such as age, mass, initial chemical composition, initial angular momentum, and environment characteristics. The range of values of these parameters causes the dispersion in the rotation period distributions observed in young stellar clusters/associations. We focus our investigation on the effects of different circumstellar environments on stellar rotation. More specifically, we consider the effects of a perturber stellar companion on the accretion-disc lifetime at early evolution stages.We are searching in stellar Associations for visual triple systems where all stellar parameters are similar, with the only exceptions of the unknown initial rotation period, and of the circum-stellar environment, in the sense that one of the two about equal-mass components has a close-by third ‘perturber’ component.In the present study we analyze the 35-Myr old visual triple system TYC 9300-0891-1AB + TYC 9300-0529-1 in the young Octans stellar association consisting of three equal-mass K0V components. We collected from the literature all information that allowed us to infer that the three components are actually physically bound forming a triple system and are members of the Octans Association. We collected broad-band photometric timeseries in two observation seasons. We discovered that all the components are variable, magnetically active, and from periodogram analysis we found the unresolved components TYC 9300-0891-1AB to have a rotation period P = 1.383 d and TYC9300-0529-1 a rotation period P = 1.634 d.TYC 9300-0891-1A, TYC 9300-0891-1B, and TYC 9300-0529-1 have same masses, ages, and initial chemical compositions. The relatively small 16% rotation period difference measured by us indicates that all components had similar initial rotation periods and disc lifetimes, and the separation of 157 AU between the component A and the ‘perturber’ component B (or vice-versa) has been sufficiently large to prevent any significant perturbation/shortening of the accretion-disc lifetime.  相似文献   

14.
When gravitational aggregates are spun to fission they can undergo complex dynamical evolution, including escape and reconfiguration. Previous work has shown that a simple analysis of the full 2-body problem provides physically relevant insights for whether a fissioned system can lead to escape of the components and the creation of asteroid pairs. In this paper we extend the analysis to the full 3-body problem, utilizing recent advances in the understanding of fission mechanics of these systems. Specifically, we find that the full 3-body problem can eject a body with as much as 0.31 of the total system mass, significantly larger than the 0.17 mass limit previously calculated for the full 2-body problem. This paper derives rigorous limits on a fissioned 3-body system with regards to whether fissioned system components can physically escape from each other and what other stable relative equilibria they could settle in. We explore this question with a narrow focus on the Spherical Full Three Body Problem studied in detail earlier.  相似文献   

15.
We present the first CCD sets of complete light curves for the W Ursae Majoris system NSVS 1557555.The observations were performed in the B, V and Ic bands using the 0.25  m telescope of the Stazione Astronomica Betelgeuse Northern Italy, during 8 nights in October and November 2016.Based on our new eleven Time of Minima (ToM), and two recent ones found in bibliography, the short orbital period of the system is confirmed and revised to P = 0.2725163 days .A reasonable fit of the synthetic light curves of the data indicate that NSVS 1557555 is a late-type (K1+K3) shallow contact binary system of W-Subtype of the W Ursae Majoris systems, with a mass ratio of q = 1.8, a degree of contact factor f = 12.5%, a temperature difference between the components of 240K and inclination i = 85°.The light curves show asymmetries at the maxima with the maximum at phase 0.75 higher the other one (inverse O’Connell effect).To explain the light asymmetries we used a model that involves an hot spotted region on the surface of the cooler star.The definitive solution is only possible with a large amount of third light (L3 = 0.58 in B Filter). It may come from a hot tertiary component.The absolute dimensions of the system are estimated. From the logM-logL diagram it is seen that both components of NSVS 1557555 follow the general pattern of the W subtype W Ursae Majoris systems.The orbital angular momentum is compared with those of other W UMa type binaries and is normal.  相似文献   

16.
UV and X-ray space-based interferometry will open unprecedented possibilities for spectral and spatial studies of a wide range of currently unresolvable interacting systems. Ultra-high angular resolution direct imaging of individual} components and transport processes in interacting binary systems is essential for detailed studies and modeling of accretion and activity. Understanding the mass loss characteristics of both components, and the dynamics of the system as a function of time, will provide key inputs to evolutionary models and will revolutionize our view and understanding of the Universe.  相似文献   

17.
CCD photometry of the short-period binary stars KQ Gem and V412 Her is presented, together with some spectroscopic observations of KQ Gem. Although both systems are classified in the General Catalogue of Variable Stars as having light curves of EB/KW type, our data and analyses, involving light-curve synthesis and stellar surface imaging, show that KQ Gem is an EB system that is in marginal contact and has an enhanced bright region around the substellar point on the secondary component, whilst V412 Her is an EW system, a true contact binary with a mass ratio of 0.46 and both stars having the same surface brightness. The properties of the components of the two systems are compared with other marginal-contact and contact binaries, and a plea is repeated for more theoretical work on the mass/energy interchanges in contact binaries.  相似文献   

18.
The chemical enrichment law Y ( Z ) is studied by using detached double-lined eclipsing binaries with accurate absolute dimensions and effective temperatures. A sample of 50 suitable systems was collected from the literature, and their effective temperatures were carefully re-determined. The chemical composition of each of the systems was obtained by comparison with stellar evolutionary models, under the assumption that they should fit an isochrone to the observed properties of the components. Evolutionary models covering a wide grid in Z and Y were adopted for our study. An algorithm was developed for searching the best-fitting chemical composition (and the age) for the systems, based on the minimization of a χ 2 function. The errors (and biases) of these parameters were estimated by means of Monte Carlo simulations, with special care put on the correlations existing between the errors of both components. In order to check the physical consistency of the results, we compared our metallicity values with empirical determinations, obtaining excellent coherence. The independently derived Z and Y values yielded a determination of the chemical enrichment law via weighted linear least-squares fit. Our value of the slope, Δ Y /Δ Z =2.2±0.8, is in good agreement with recent results, but it has a smaller formal error and it is free of systematic effects. Linear extrapolation of the enrichment law to zero metals leads to an estimation of the primordial helium abundance of Y p=0.225±0.013, possibly affected by systematics in the effective temperature determination.  相似文献   

19.
Strong gravitational lensing by galaxies in MOdified Newtonian Dynamics (MOND) has until now been restricted to spherically symmetric models. These models were able to account for the size of the Einstein ring of observed lenses, but were unable to account for double-imaged systems with collinear images, as well as four-image lenses. Non-spherical models are generally cumbersome to compute numerically in MOND, but we present here a class of analytic non-spherical models that can be applied to fit double-imaged and quadruple-imaged systems. We use them to obtain a reasonable MOND fit to 10 double-imaged systems, as well as to the quadruple-imaged system Q2237+030 which is an isolated bulge-disc lens producing an Einstein cross. However, we also find five double-imaged systems and three quadruple-imaged systems for which no reasonable MOND fit can be obtained with our models. We argue that this is mostly due to the intrinsic limitation of the analytic models, even though the presence of small amounts of additional dark mass on galaxy scales in MOND is also plausible.  相似文献   

20.
A detailed analysis of the 2006 November 15 data release X-ray surface density Σ-map and the strong and weak gravitational lensing convergence κ-map for the Bullet Cluster 1E0657-558 is performed and the results are compared with the predictions of a modified gravity (MOG) and dark matter. Our surface density Σ-model is computed using a King β-model density, and a mass profile of the main cluster and an isothermal temperature profile are determined by the MOG. We find that the main cluster thermal profile is nearly isothermal. The MOG prediction of the isothermal temperature of the main cluster is   T = 15.5 ± 3.9 keV  , in good agreement with the experimental value   T = 14.8+2.0−1.7 keV  . Excellent fits to the 2D convergence κ-map data are obtained without non-baryonic dark matter, accounting for the 8σ spatial offset between the Σ-map and the κ-map reported in Clowe et al. The MOG prediction for the κ-map results in two baryonic components distributed across the Bullet Cluster 1E0657-558 with averaged mass fraction of 83 per cent intracluster medium (ICM) gas and 17 per cent galaxies. Conversely, the Newtonian dark matter κ-model has on average 76 per cent dark matter (neglecting the indeterminant contribution due to the galaxies) and 24 per cent ICM gas for a baryon to dark matter mass fraction of 0.32, a statistically significant result when compared to the predicted Λ-cold dark matter cosmological baryon mass fraction of 0.176+0.019−0.012.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号