首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RS-monitoring index systems of ecological environment changes at a large scale, based on empirical data and trends in environmental change in Central Asia, are developed using NOAA and MODIS data. Moreover, with the help of mathematical statistics and GIS spatial analysis, the degrees, hazards and distribution extent of various possible ecological problems are discussed, environmental changes in Central Asia in 1990 and 2005 are separately evaluated, and dynamic changes in the environment in Central Asia over a 15-year period are analyzed. The results reveal that during the 15-year period from 1990 to 2005, areas of degenerated vegetation in Kazakhstan, Uzbekistan, Turkmenistan, Kirghizstan and Tadzhikistan were enlarged by 0.069×105 km2, 0.081×105 km2, 0.296×105 km2, 0.022×105 km2 and 0.112×105 km2, respectively. The ecological environment in Central Asia was in the state of significant degeneration and even deterioration. This study proves that NOAA and MODIS data can be used to successfully monitor the environment and provide useful results.  相似文献   

2.
Hydrological characteristics of englacial and subglacial drainage systems in Gulkana Glacier, Alaska, were examined by analysing temporal variations of discharge and sediment load in the proglacial Phelan Creek in 2001. From data plots on semi‐log paper, it appeared appropriate to separate both discharge and sediment load into fast and slow components. The two components were possibly produced by two different drainage systems: an englacial and subglacial, ‘channellized’ system in the ablation zone, and a subglacial, ‘distributed’ system in the accumulation zone. The data indicate the occurrence of an event during which part of the ‘distributed’ drainage system changed into the ‘channellized’ drainage system. The daily time‐series of discharge and sediment load were represented using a tank model. In the model, the drainage from an additional tank was added, supposing that a subglacial reservoir full of water and sediment collapsed slowly when the subglacial drainage system changed from distributed to channellized. The simulation with the collapsed tank gave much more reasonable results than those with no collapsed tank. The contribution of the collapsed tank to total sediment load is 24%, which is much larger than 9% to total discharge. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The objectives of this research were to evaluate the effect of land-use change on streamflow, sediment and water quality data along the Lower Yom River, Thailand, covering an intensively agricultural area of 14 613.6 km2, and to assess the relative impact of point and non-point sources of pollution from multiple-land-use watersheds. Long-term calibration and validation of the SWAT (Soil and Water Assessment Tool) model was performed on data for 2000–2013. Land-use change led to a 13–49% increase in runoff in the basin and resulted in 37–427% increased sediment yield. The amount of NO3-N load doubled in the upper and middle parts of the study area, while the increase in PO43– ranged from 37 to 377%, reflecting the increase in agricultural lands and urban areas. It is concluded that the changed land use is closely associated with the quantity of runoff, sediment yield and the NO3-N and PO43– concentrations.  相似文献   

4.
Climate change can cause considerable changes in water resources and assessing the potential impacts can provide important information for regional sustainable development. The objectives were to evaluate the possible impacts of climate change during 2010-2039 on water resources (runoff, soil water content, and evapotranspiration) in the Heihe watershed on the Loess Plateau of China and to further explore adaptive measures to cope with the changes. Projections of four climate models (CCSR/NIES, CGCM2, CSIRO...  相似文献   

5.
The quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by internal and external drivers. Watershed models have become essential tools to understand the behaviour of a catchment under dynamic processes. In this study, a physically based watershed model called Soil Water Assessment Tool was used to understand the hydrologic behaviour of the Upper Tiber River Basin, Central Italy. The model was successfully calibrated and validated using observed weather and flow data for the period of 1963–1970 and 1971–1978, respectively. Eighteen parameters were evaluated, and the model showed high relative sensitivity to groundwater flow parameters than the surface flow parameters. An analysis of annual hydrological water balance was performed for the entire upper Tiber watershed and selected subbasins. The overall behaviour of the watershed was represented by three categories of parameters governing surface flow, subsurface flow and whole basin response. The base flow contribution has shown that 60% of the streamflow is from shallow aquifer in the subbasins. The model evaluation statistics that evaluate the agreement between the simulated and the observed streamflow at the outlet of a watershed and other three different subbasins has shown a coefficient of determination (R2) from 0.68 to 0.81 and a Nash–Sutcliffe efficiency (ENS) between 0.51 and 0.8 for the validation period. The components of the hydrologic cycle showed variation for dry and wet periods within the watershed for the same parameter sets. On the basis of the calibrated parameters, the model can be used for the prediction of the impact of climate and land use changes and water resources planning and management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

7.
Temporal variation of runoff chemistry and its seasonal controls relating to chemical weathering processes and drainage system evolution were examined at Urumqi Glacier No.1 in Xinjiang, China, over a full melt season. The dominant ions in meltwater runoff are HCO3?, Ca2+, and SO42?; and Fe, Sr, and Al are dominant elements. Concentrations of major ions and some elements show periodic variations with seasons and negatively correlate with discharge, whereas other elements (e.g., Al, Ni, Cu, Zn, Cd, and Pb) show a random change, providing insights into the hydrological and physicochemical controls. HCO3? and Ca2+ are primarily derived from calcite, SO42? and Fe mainly come from pyrite, and Sr and Al principally originate from silicate. Hydrochemical fluxes of solutes exhibit strong seasonality but are positively related to discharge, suggesting an increasing release of solutes during higher flow conditions. Solute yields, cation denudation rate, and chemical weathering intensity observed at Urumqi Glacier No.1 are higher than those at most basins worldwide. This suggests that chemical weathering in central Asia may be stronger than at other glacial basins with similar specific discharge. Concentrations of some elements (e.g., Fe, Al, As, Pb, and Zn) are close to or exceed the guidelines for drinking water standards in meltwater‐fed rivers. These rivers may face future challenges of water quality degradation, and relationships between changing flow and water quality conditions should be established soon, given that development of channelized flow is expected to be earlier over a melt season in a warming climate.  相似文献   

8.
Land‐cover/climate changes and their impacts on hydrological processes are of widespread concern and a great challenge to researchers and policy makers. Kejie Watershed in the Salween River Basin in Yunnan, south‐west China, has been reforested extensively during the past two decades. In terms of climate change, there has been a marked increase in temperature. The impact of these changes on hydrological processes required investigation: hence, this paper assesses aspects of changes in land cover and climate. The response of hydrological processes to land‐cover/climate changes was examined using the Soil and Water Assessment Tool (SWAT) and impacts of single factor, land‐use/climate change on hydrological processes were differentiated. Land‐cover maps revealed extensive reforestation at the expense of grassland, cropland, and barren land. A significant monotonic trend and noticeable changes had occurred in annual temperature over the long term. Long‐term changes in annual rainfall and streamflow were weak; and changes in monthly rainfall (May, June, July, and September) were apparent. Hydrological simulations showed that the impact of climate change on surface water, baseflow, and streamflow was offset by the impact of land‐cover change. Seasonal variation in streamflow was influenced by seasonal variation in rainfall. The earlier onset of monsoon and the variability of rainfall resulted in extreme monthly streamflow. Land‐cover change played a dominant role in mean annual values; seasonal variation in surface water and streamflow was influenced mainly by seasonal variation in rainfall; and land‐cover change played a regulating role in this. Surface water is more sensitive to land‐cover change and climate change: an increase in surface water in September and May due to increased rainfall was offset by a decrease in surface water due to land‐cover change. A decrease in baseflow caused by changes in rainfall and temperature was offset by an increase in baseflow due to land‐cover change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Late Pleistocene records of loess deposition are a critical archive for understanding terrestrial paleoenvironment changes in Central Asia. The age of loess is not well known for the deserts regions and surrounding high plateaus in Central Asia. Previous studies have shown that there remains a disparity between ages for loess deposition by luminescence and 14C dating. This study evaluates the potential of optically stimulated luminescence (OSL) to date a loess sequence resting on fluvial sands in the east Ili Basin, Central Asia. The single-aliquot regenerative-dose (SAR) protocol on coarse grain quartz was employed for equivalent dose determinations. The basal fluvial sand returned a secure OSL age, with low overdispersion value in equivalent doses (19 ± 2%) of ca. 36 ka and provides a close, but maximum age estimate (within 5 ka) on the initiation of loess deposition. However, the loess yielded high overdispersion values for equivalent doses and age reversals, coincident with diffuse paleosols; indicating that pedoturbation with loess deposition may be a dominant process. OSL ages between ca. 45 and 14 ka calculated using a maximum age model and OSL ages from other sites in the Basin suggests that the latest major period of loess deposition was between 70 and 10 ka ago. A future hypothesis to test based on these analyses is that there may be three periods of heightened loess deposition at ca. 45, 35 to 19 and 14 ka, when desert source areas to the west were particularly dry.  相似文献   

10.
Abstract

Climate change is recognized to be one of the most serious challenges facing mankind today. Driven by anthropogenic activities, it is known to be a direct threat to our food and water supplies and an indirect threat to world security. Increase in the concentration of carbon dioxide and other greenhouse gases in the atmosphere will certainly affect hydrological regimes. The consequent global warming is expected to have major implications on water resources management. The objective of this research is to present a general approach for evaluating the impacts of potential climate change on streamflow in a river basin in the humid tropical zone of India. Large-scale global climate models (GCMs) are the best available tools to provide estimates of the effect of rising greenhouse gases on rainfall and temperature. However the spatial resolution of these models (250 km?×?250 km) is not compatible with that of watershed hydrological models. Hence the outputs from GCMs have to be downscaled using regional climate models (RCMs), so as to project the output of a GCM to a finer resolution (50 km?×?50 km). In the present work, the projections of a GCM for two scenarios, A2 and B2 are downscaled by a RCM to project future climate in a watershed. Projections for two important climate variables, viz. rainfall and temperature are made. These are then used as inputs for a physically-based hydrological model, SWAT, in order to evaluate the effect of climate change on streamflow and vegetative growth in a humid tropical watershed.

Citation Raneesh, K. Y. & Santosh, G. T. (2011) A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrol. Sci. J. 56(6), 946–965.  相似文献   

11.
1975-2007年中亚干旱区内陆湖泊面积变化遥感分析   总被引:6,自引:2,他引:6  
白洁  陈曦  李均力  杨辽 《湖泊科学》2011,23(1):80-88
中亚干旱区内陆湖泊的湖面变化反映了气候波动和人类活动对流域水文过程的影响.本文以中亚干旱区平原区尾闾湖泊、吞吐湖泊和高山湖泊三类典型内陆湖泊为研究对象,利用1975-2007年Landsat遥感影像,基于归一化水体指数提取湖泊水域边界信息,分析近30年来内陆湖泊湖面变化特征.结果表明,近30年来,研究区内有超过一半的内...  相似文献   

12.
R. Cibin  I. Chaubey  B. Engel 《水文研究》2012,26(11):1629-1641
Ethanol from corn stover is expected to play an important role in achieving the Energy Independence and Security Act 2007 target of 136.25 billion liters (36 billion gallons) of biofuel by 2022. The 2010 USDA biofuel strategic report estimates that 16.3 billion liters (4.3 billion gallons) of biofuel from crop residues such as corn stover and straw is possible. Corn stover is expected to provide the majority of the estimated biofuel from crop residues, especially from the Midwestern US Corn Belt. A major concern related to removing corn stover is potential negative hydrologic and water quality impacts. The overall goal of this study was to estimate the watershed scale environmental impacts of corn stover removal in an agricultural watershed in the Midwest US. Soil and Water Assessment Tool was used to simulate the impacts associated with three corn stover removal rates (38%, 52% and 70%). The stream flow, nitrate and mineral phosphorus loading were reduced, and sediment and organic nitrogen loading were increased at the watershed outlet with all three stover removal scenarios. The stream flow was reduced by 1.4%, 2.0% and 2.7% from the baseline scenario (no stover removed) at 38%, 52% and 70% stover removal rates, respectively. The sediment loading increased by 19.7%, 22.5% and 29.0%, organic nitrogen increased by 0.8%, 2.0% and 5.5%, mineral phosphorus decreased by 11.7%, 15.5% and 21.0%, and nitrate decreased by 2.0%, 3.2% and 5.3% from the baseline scenario at the watershed outlet with 38%, 52% and 70% stover removal rates, respectively. The model results also indicate that the watershed response to stover removal is sensitive to watershed characteristics and management inputs, such as, slope and amount of fertilizer applied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The climate sensitive analysis of potential climate change on streamflow has been conducted using a hydrologic model to identify hydrologic variability associated with climate scenarios as a function of perturbed climatic variables (e.g. carbon dioxide, temperature, and precipitation). The interannual variation of water resources availability as well as low flow frequency driven by monsoonal time shifts have been investigated to evaluate the likelihood of droughts in a changing climate. The results show that the timing shift of the monsoon window associated with future climate scenarios clearly affect annual water yield change of ? 12 and ? 8% corresponding to 1‐month earlier and 1‐month later monsoon windows, respectively. Also, a more severe low flow condition has been predicted at 0·03 m3/s as opposed to the historic 7Q10 flow of 1·54 m3/s given at extreme climate scenarios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Dust depositions are critical archives for understanding interior aridification and westerly climatic changes in Central Asia. Accurate and reliable dating of loess is very important for interpreting and correlating environmental records. There remains a disparity between luminescence ages and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia. In this study, we establish a closely spaced quartz optically stimulated luminescence (OSL) chronology for the 20.5-m-thick Nilka loess section in the Ili Basin. Based on OSL ages, two intervals of higher mass accumulation rate occurred at 49–43 ka and 24–14 ka. We further compare these OSL ages with 23 accelerator mass spectrometry (AMS) 14C ages of bulk organic matter. The results indicate that the OSL and radiocarbon ages agree well for ages younger than ca. 25 14C cal ka BP. However, beyond 30 cal ka BP, there is no consistent increase in AMS 14C age with depth, while the OSL ages continue to increase. These differences confirm the observation that the AMS 14C ages obtained using conventional acid–base–acid (ABA) pretreatment are severely underestimated in other terrestrial deposits in Central Asia, which could be due to 2–4% modern carbon contamination. However, OSL dating is applicable for constructing an accurate chronology beyond 30 cal ka BP. We suggest caution when interpreting paleoenvironmental changes based on radiocarbon ages older than 25 cal ka BP.  相似文献   

15.
The paper describes a hydrological model for agricultural water intervention in a community watershed at Kothapally in India, developed through integrated management and a consortium approach. The impacts of various soil and water management interventions in the watershed are compared to no‐intervention during a 30‐year simulation period by application of the calibrated and validated ARCSWAT 2005 (Version 2.1.4a) modelling tool. Kothapally receives, on average, 800 mm rainfall in the monsoon period. 72% of total rainfall is converted as evaporation and transpiration (ET), 20% is stored by groundwater aquifer, and 8% exported as outflow from the watershed boundary in current water interventions. ET, groundwater recharge and outflow under no‐intervention conditions are found to be 64, 9, and 19%, respectively. Check dams helped in storing water for groundwater recharge, which can be used for irrigation, as well minimising soil loss. In situ water management practices improved the infiltration capacity and water holding capacity of the soil, which resulted in increased water availability by 10–30% and better crop yields compared to no‐intervention. Water outflows from the developed watershed were more than halved compared to no‐intervention, indicating potentially large negative downstream impacts if these systems were to be implemented on a larger scale. On the other hand, in the watershed development program, sediment loads to the streams were less than one‐tenth. It can be concluded that the hydrological impacts of large‐scale implementation of agricultural water interventions are significant. They result in improved rain‐fed agriculture and improved productivity and livelihood of farmers in upland areas while also addressing the issues of poverty, equity, and gender in watersheds. There is a need for case‐specific studies of such hydrological impacts along with other impacts in terms of equity, gender, sustainability, and development at the mesoscale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
1 Motivation In the summer of 1998, areas along the middle and lower reaches of the Yangtze River suffered a damag- ing flood. Causes of the flooding became a hot topic on mass media after the disaster. Deforestation on the upstream areas was widely blamed as the major reason for the flooding. Some scientists, however, disproved the point of view. They believed that the impact of land use and land cover changes (LUCC) was over- stated[1]. Actually, the controversy over forest hydrol- ogy h…  相似文献   

17.
Climatic changes have altered surface water regimes worldwide, and climate projections suggest that such alterations will continue. To inform management decisions, climate projections must be paired with hydrologic models to develop quantitative estimates of watershed scale water regime changes. Such modeling approaches often involve downscaling climate model outputs, which are generally presented at coarse spatial scales. In this study, Coupled Model Intercomparison Project Phase 5 climate model projections were analyzed to determine models representing severe and conservative climate scenarios for the study watershed. Based on temperature and precipitation projections, output from GFDL‐ESM2G (representative concentration pathway 2.6) and MIROC‐ESM (representative concentration pathway 8.5) were selected to represent conservative (ΔC) and severe (ΔS) change scenarios, respectively. Climate data were used as forcing for the soil and water assessment tool to analyze the potential effects of climate change on hydrologic processes in a mixed‐use watershed in central Missouri, USA. Results showed annual streamflow decreases ranging from ?5.9% to ?26.8% and evapotranspiration (ET) increases ranging from +7.2% to +19.4%. During the mid‐21st century, sizeable decreases to summer streamflow were observed under both scenarios, along with large increases of fall, spring, and summer ET under ΔS. During the late 21st century period, large decreases of summer streamflow under both scenarios, and large increases to spring (ΔS), fall (ΔS) and summer (ΔC) ET were observed. This study demonstrated the sensitivity of a Midwestern watershed to future climatic changes utilizing projections from Coupled Model Intercomparison Project Phase 5 models and presented an approach that used multiple climate model outputs to characterize potential watershed scale climate impacts.  相似文献   

18.
Min Xu  Hao Wu  Shichang Kang 《水文研究》2018,32(1):126-145
The Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.  相似文献   

19.
ABSTRACT

This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff.  相似文献   

20.
The upstream regions of the Three Gorges Reservoir (TGR) have undergone significant changes in land use during recent years, and these changes have strongly influenced runoff generation downstream. In this study, the relationships between land use changes and corresponding hydrological responses in the Dong and Puli River basins in the upstream region of the TGR were quantified using the runoff coefficient. Empirical regression equations between the runoff coefficient and the percentage of land use types were developed for the study area using partial least squares regression (PLSR). The Soil and Water Assessment Tool was used to simulate the runoff generation processes in the two basins, and land use maps developed using Landsat Thematic Mapper images from 2000, 2005, and 2010 were compared to extract information on changes in land use. The results showed that the total area of forest and pasture decreased over the 10‐year study period, while paddy fields and upland increased in both basins. These land use changes dramatically affected hydrological processes. Evapotranspiration decreased by 2.13% and 2.41% between 2000 and 2010 in the Dong and Puli River basins, respectively, whereas quickflow, infiltration, and baseflow increased to varying degrees. The PLSR modeling results showed that upland had a negative effect on the runoff coefficient and was the most influential land use type in the study area. In contrast, a positive effect of forest on runoff generation was found in most of the regression models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号