首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cloudiness is one of the most important factors which affect the quality of an astronomical site, the monitoring and processing of the night- time cloudiness are especially important. The ground-based cloudiness camera is adopted to carry out the monitoring of the all-sky cloudiness, the images taken need to be processed by means of an effective method so as to quantize the cloudiness. The night-time cloudiness images are seriously affected by the moon- light, and therefore, the night-time cloudiness images are processed by dividing them into the moonlight and moonless two sorts. In the light of the condition of moonless night, the processing method of night-time cloudiness is given. The positioning and photometry of the bright stars in the image are conducted to determine their magnitude differences. By referring to the magnitude differences of the bright stars in the clear-night image, the probability of the bright stars of which the magnitude differences are lower than the threshold value are regarded as the probability standard of clear nights. Three sorts of images are selected to test the method. The cloudiness is determined, and the effect of the threshold condition on the result is analyzed. Finally, the applicable range and uncertainty of the method are discussed.  相似文献   

2.
Observation data from radio telescopes is typically stored in three (or higher) dimensional data cubes, the resolution, coverage and size of which continues to grow as ever larger radio telescopes come online. The Square Kilometre Array, tabled to be the largest radio telescope in the world, will generate multi-terabyte data cubes – several orders of magnitude larger than the current norm. Despite this imminent data deluge, scalable approaches to file access in Astronomical visualisation software are rare: most current software packages cannot read astronomical data cubes that do not fit into computer system memory, or else provide access only at a serious performance cost. In addition, there is little support for interactive exploration of 3D data.We describe a scalable, hierarchical approach to 3D visualisation of very large spectral data cubes to enable rapid visualisation of large data files on standard desktop hardware. Our hierarchical approach, embodied in the AstroVis prototype, aims to provide a means of viewing large datasets that do not fit into system memory. The focus is on rapid initial response: our system initially rapidly presents a reduced, coarse-grained 3D view of the data cube selected, which is gradually refined. The user may select sub-regions of the cube to be explored in more detail, or extracted for use in applications that do not support large files. We thus shift the focus from data analysis informed by narrow slices of detailed information, to analysis informed by overview information, with details on demand. Our hierarchical solution to the rendering of large data cubes reduces the overall time to complete file reading, provides user feedback during file processing and is memory efficient. This solution does not require high performance computing hardware and can be implemented on any platform supporting the OpenGL rendering library.  相似文献   

3.
介绍了云南天文台1.2米地平式望远镜用于天文观测和图像采集处理的方法,建立了新的、独特的全天指向模型,大大提高了该望远镜的指向精度,达到1″,并在多年的实际应用中得到验证。  相似文献   

4.
We discuss the technique of Wide-field imaging as it applies to Very Long Baseline Interferometry (VLBI). In the past VLBI data sets were usually averaged so severely that the field-of-view was typically restricted to regions extending a few hundred milliarcseconds from the phase centre of the field. Recent advances in data analysis techniques, together with increasing data storage capabilities, and enhanced computer processing power, now permit VLBI images to be made whose angular size represents a significant fraction of an individual antenna's primary beam. This technique has recently been successfully applied to several large separation gravitational lens systems, compact Supernova Remnants in the starburst galaxy M82, and two faint radio sources located within the same VLA FIRST field. It seems likely that other VLBI observing programmes might benefit from this wide-field approach to VLBI data analysis. With the raw sensitivity of global VLBI set to improve by a factor 4–5 over the coming few years, the number of sources that can be detected in a given field will rise considerably. In addition, a continued progression in VLBI's ability to image relatively faint and extended low brightness temperature features (such as hot-spots in large-scale astrophysical jets) is also to be expected. As VLBI sensitivity approaches the μJy level, a wide-field approach to data analysis becomes inevitable.  相似文献   

5.
介绍了1.2m地平式望远镜利用天文观测和图像采集处理的方法,通过建立测角编码器小周期模型,解决了数显部分的细分误差,提高了指向精度,对于空间目标高精度测轨、定轨及激光卫星的盲跟踪测距都是十分重要的。  相似文献   

6.
A probabilistic technique for the joint estimation of background and sources with the aim of detecting faint and extended celestial objects is described. Bayesian probability theory is applied to gain insight into the co-existence of background and sources through a probabilistic two-component mixture model, which provides consistent uncertainties of background and sources. A multiresolution analysis is used for revealing faint and extended objects in the frame of the Bayesian mixture model. All the revealed sources are parametrized automatically providing source position, net counts, morphological parameters and their errors.
We demonstrate the capability of our method by applying it to three simulated data sets characterized by different background and source intensities. The results of employing two different prior knowledge on the source signal distribution are shown. The probabilistic method allows for the detection of bright and faint sources independently of their morphology and the kind of background. The results from our analysis of the three simulated data sets are compared with other source detection methods. Additionally, the technique is applied to ROSAT All-Sky Survey data.  相似文献   

7.
We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using manually classified images of elliptical, spiral and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbour rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with an accuracy of ∼90 per cent compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects.  相似文献   

8.
9.
An algorithm for cosmic‐ray rejection from single images is presented. The algorithm is based on modeling human perception using fuzzy logic. The proposed algorithm is specifically designed to reject multiple‐pixel cosmic ray hits that are larger than some of the point spread functions of the true astronomical sources. Experiments show that the algorithm can accurately reject ∼97.5% of the cosmic rays hits, while mistakenly rejecting 0.02% of the true astronomical sources. The major advantage of the presented algorithm is its computational efficiency. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We develop a radio astronomical approach to 3D‐reconstruction in few projections tomography. It is based on the 2‐CLEAN DSA method which consists of two clean algorithms by using a synthesized beam. In complex cases two extreme solutions are used for the analysis of the image structure. These solutions determine the limits of permissible energy redistribution on the image among the components of small and large scales. Two variants of 3D‐reconstruction proceeding from a set of two‐dimensional projections (3D2D) and from a set of one‐dimensional ones (3D1D) are considered. It is shown that the quality of 3D2D‐reconstruction should be similar to the quality of 2D1D‐reconstruction if the same number of equally spaced scans is used. But a doubled number of projections is required for 3D1D‐reconstruction. We have simulated 3D‐reconstruction of an optically thin emitting object. The present technique is a component of astrotomography and it has good prospects for a wide range of remote sensing. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
For the time-domain astronomical research, the optical telescopes with a small and medium aperture can get a huge amount of data through automatic sky surveying. A certain proportion of automatically acquired data are interfered by clouds, which makes it very difficult to automatically extract the dim objects and make photometry. Therefore, it is necessary to identify and extract clouds from these images as the index figures for a reference in the subsequent information extraction. In this paper, an astronomical image selection system based on the support vector machine is proposed, which sets the gray value inconsistency and texture difference as the reference to select the images interfered by clouds. Based on the classification results, by through the histogram transformation and feature selection, the index figures of clouds can be further extracted. The experimental results show that our method can achieve the real-time selection of astronomical images with a classification accuracy better than 98%. By the histogram transformation and feature selection the index figure of clouds can be preliminarily extracted as the references for the photometry and dim object extraction.  相似文献   

12.
Two parameters are developed to analyze the CCD images from ground-based and/or space telescopes. The first parameter, deduced from the intensity profile of the object sharp, is useful to resolve stars and hot pixels. The second parameter shape distinguishes the stars from the background cosmic-ray events using geometric characteristics defined by its shapes. The parameters are applied to a simulated OMC/INTEGRAL image and a HST image.  相似文献   

13.
We present maps and astrometric results from first epoch, simultaneous MERLIN and Global VLBI observations of the very weak core of a double-lobed radio source, using as reference the bright, compact, flat-spectrum quasar 1636+473 A, 20 arcsec away. The observations were made in May 1995 at 5 GHz. The phase-referenced VLBI map of the weak core, of resolution 1.5 mas, contains a high percentage of the core flux density seen in the MERLIN map. Further hybrid mapping iterations reveal a faint, one-sided core extension on the same side as the MERLIN jet. We explore the effect of both temporal and other coherence losses on the phase-reference map. We relate our results to the structural asymmetry in weak AGN cores within the context of unification models.  相似文献   

14.
A maximum entropy method (MEM) is presented for separating the emission resulting from different foreground components from simulated satellite observations of the cosmic microwave background radiation (CMBR). In particular, the method is applied to simulated observations by the proposed Planck Surveyor satellite. The simulations, performed by Bouchet &38; Gispert, include emission from the CMBR and the kinetic and thermal Sunyaev–Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free–free and synchrotron emission. We find that the MEM technique performs well and produces faithful reconstructions of the main input components. The method is also compared with traditional Wiener filtering and is shown to produce consistently better results, particularly in the recovery of the thermal SZ effect.  相似文献   

15.
The auroras on Jupiter and Saturn can be studied with a high sensitivity and resolution by the Hubble Space Telescope ( HST ) ultraviolet (UV) and far-ultraviolet Space Telescope Imaging Spectrograph (STIS) and Advanced Camera for Surveys (ACS) instruments. We present results of automatic detection and segmentation of Jupiter's auroral emissions as observed by the HST ACS instrument with the VOronoi Image SEgmentation (VOISE). VOISE is a dynamic algorithm for partitioning the underlying pixel grid of an image into regions according to a prescribed homogeneity criterion. The algorithm consists of an iterative procedure that dynamically constructs a tessellation of the image plane based on a Voronoi diagram, until the intensity of the underlying image within each region is classified as homogeneous. The computed tessellations allow the extraction of quantitative information about the auroral features, such as mean intensity, latitudinal and longitudinal extents and length-scales. These outputs thus represent a more automated and objective method of characterizing auroral emissions than manual inspection.  相似文献   

16.
Gaia is the most ambitious space astrometry mission currently envisaged and it will be a technological challenge in all its aspects. Here we describe a proposal for the data compression system of Gaia, specifically designed for this mission but based on concepts that can be applied to other missions and systems as well. Realistic simulations have been performed with our Telemetry CODEC software, which performs a stream partitioning and pre-compression to the science data. In this way, standard compressors such as bzip2 or szip boost their performance and decrease their processing requirements when applied to such pre-processed data. These simulations have shown that a lossless compression factor of 3 can be achieved, whereas standard compression systems were unable to reach a factor of 2.   相似文献   

17.
18.
We developed a source detection algorithm based on the Minimal Spanning Tree (MST), that is a graph-theoretical method useful for finding clusters in a given set of points. This algorithm is applied to γ-ray bi-dimensional images where the points correspond to the arrival direction of photons, and the possible sources are associated with the regions where they clusterize. Some filters to select these clusters and to reduce the spurious detections are introduced. An empirical study of the statistical properties of MST on random fields is carried out in order to derive some criteria to estimate the best filter values. We also introduce two parameters useful to verify the goodness of candidate sources. To show how the MST algorithm works in practice, we present an application to an EGRET observation of the Virgo field, at high Galactic latitude and with a low and rather uniform background, in which several sources are detected.  相似文献   

19.
20.
We describe the software requirement and design specifications for all-sky panoramic astronomical pipelines. The described software aims to meet the specific needs of superwide-angle optics, and includes cosmic-ray hit rejection, image compression, star recognition, sky opacity analysis, transient detection and a web server allowing access to real-time and archived data. The presented software is being regularly used for the pipeline processing of 11 all-sky cameras located in some of the world's premier observatories. We encourage all-sky camera operators to use our software and/or our hosting services and become part of the global Night Sky Live network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号