首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

2.
This paper presents anisotropic, homogeneous two-fluid cosmological models in a Bianchi type I space–time with a variable gravitational constant G and cosmological constant Λ. In the two-fluid model, one fluid represents the matter content of the universe and another fluid is chosen to model the CMB radiation. We find a variety of solutions in which the cosmological parameter varies inversely with time t. We also discuss in detail the behavior of associated fluid parameters and kinematical parameters. This paper pictures cosmic history when the radiation and matter content of the universe are in an interactive phase. Here, Ω is closing to 1 throughout the cosmic evolution.   相似文献   

3.
The possibility that the cosmological constant is decaying as the observable universe grows is explored, and we define a cosmological parameter, depending of the vacuum energy and the universe radius, which should be presently ca. 122 orders of magnitude smaller than at the Planck epoch. From it, a new version of the Friedmann equation for a flat universe is obtained, which allows the estimation of the Hubble parameter at any epoch and the reconstruction of the expansion history. The main result is a quasi-linear expansion dynamics in concurrence with a number of previous works. This behavior is compatible with the main features of observational cosmology and avoids the horizon, flatness, cosmological constant, coincidence and age problems without the need of neither inflation nor initial fine-tuning.  相似文献   

4.
The most recently celebrated cosmological implications of the cosmic microwave background studies with WMAP (2006), though fascinating by themselves, do, however, create some extremely hard conceptual challenges for the present‐day cosmology. These recent extremely refined WMAP observations seem to reflect a universe which was extremely homogeneous at the recombination age and thus is obviously causally closed at the time of the cosmic recombination era. From the very tiny fluctuations apparent at this early epoch the presently observable nonlinear cosmic density structures can, however, only have grown up, if in addition to a mysteriously high percentage of dark matter an even higher percentage of dark energy is admitted as drivers of the cosmic evolution. The required dark energy density, on the other hand, is nevertheless 120 orders of magnitude smaller then the theoretically calculated value. These are outstanding problems of present day cosmology onto which we are looking here under new auspices. We shall investigate in the following, up to what degree a universe simply abolishes all these outstanding problems in case it reveals itself as an universe of constant total energy. As we shall show basic questions like: How could the gigantic mass of the universe of about 1080 proton masses at all become created? – Why is the presently recognized and obviously indispensable cosmic vacuum energy density so terribly much smaller than is expected from quantum theoretical considerations, but nevertheless terribly important for the cosmic evolution? – Why is the universe within its world horizon a causally closed system? –, can perhaps simply be answered, when the assumption is made that the universe has a constant total energy with the consequence that the total mass density of the universe (matter and vacuum) scales with . Such a scaling of matter and vacuum energy abolishes the horizon problem, and the cosmic vacuum energy density can easily be reconciled with its theoretical expectation values. In this model the mass of the universe increases linearly with the world extension Ru and can grow up from a Planck mass as a vacuum fluctuation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
It is well known that the universe is undergoing a phase of accelerated expansion. Plenty of models have already been created with the purpose of describing what causes this non-expected cosmic feature. Among them, one could quote the extradimensional and the f(R,T) gravity models. In this work, in the scope of unifying Kaluza-Klein extradimensional model with f(R,T) gravity, cosmological solutions for density and pressure of the universe are obtained from the induced matter model application. Particular solutions for vacuum quantum energy and radiation are also shown.  相似文献   

6.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Robertson-Walker universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The cosmological term tends asymptotically to a genuine cosmological constant and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

7.
There is now evidence that the cosmological constant Λ has a non-zero positive value. Alternative scenarios to a pure cosmological constant model are provided by quintessence, an effective negative pressure fluid permeating the Universe. Recent results indicate that the energy density ρ and the pressure p of this fluid are constrained by − ρ ≤ p ≲−0.6 ρ . As p =− ρ is equivalent to the pure cosmological constant model, it is appropriate to analyse this particular, but important, case further.
We study the linear theory of perturbations in a Friedmann–Robertson–Walker universe with a cosmological constant. We obtain the equations for the evolution of the perturbations in the fully relativistic case, for which we analyse the single-fluid and two-fluid cases. We obtain solutions to these equations in appropriate limits. We also study the Newtonian approximation. We find that for a positive cosmological constant universe (i) the perturbations will grow more slowly in the relativistic regime for a two-fluid composed of dark matter and radiation, and (ii) in the Newtonian regime the perturbations stop growing.  相似文献   

8.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Bianchi type-I universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The model obtained approaches isotropy. The cosmological term tends asymptotically to a genuine cosmological constant, and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

9.
10.
Exact expressions are given for the properties of the general expanding Friedmann model universe with non-zero cosmological constant and containing non-interacting matter and radiation.  相似文献   

11.
On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.  相似文献   

12.
Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ∼2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.  相似文献   

13.
Confronted with microwave background observations by WMAP and with consternating supernova locations in the magnitude–redshift diagram modern cosmology feels enforced to call for cosmic vacuum energy as a necessary cosmological ingredient. Most often this vacuum energy is associated with Einstein’s cosmological constant Λ or with so-called “dark energy”. A positive value of Λ describes an inflationary action on cosmic dynamics which in view of recent cosmological data appears as an absolute need. In this article, however, we question the hypothesis of a constant vacuum energy density since not justifiable on physical grounds. Instead we show that gravitational binding energy of cosmic matter, connected with ongoing structure formation during cosmic expansion, acts similar to vacuum energy, since it reduces the effective gravitating proper mass density. Thus one may be encouraged to believe that actions of cosmic vacuum energy and gravitational binding energy concerning their cosmological effects are closely related to each other, perhaps in some respects even have identical phenomenologies.  相似文献   

14.
The universe with adiabatic matter creation is considered. It is thought that the negative pressure caused by matter creation can play the role of a dark energy component, and drive the accelerating expansion of the universe. Using the Type Ia supernovae (SNe Ia) data, the observational Hubble parameter data, the Cosmic Microwave Background (CMB) data and the Baryonic Acoustic Oscillation (BAO) data, we make constraints on the cosmological parameters, assuming a spatially flat universe. Our results show that the model with matter creation is consistent with the SNe Ia data, while the joint constraints of all these observational data disfavor this model. If the cosmological constant is taken into account, a traditional model without matter creation is favored by the joint observations.  相似文献   

15.
A previously studied theory of gravitation in flat space-time is applied to homogeneous, isotropic cosmological models. In addition to radiation a two-component fluid model consisting of dust and of a background field is studied. This universe starts from a nonsingular state and expands for ever. The energy of radiation, of dust and of the background are emerged from the gravitational energy. Entropy is produced. The age of the universe is infinite measured in units of absolute time whereas the proper-time of the universe is finite. The sum of the density parameters of dust, of radiation and of the background field is about one. There is no flatness and no monopole problem.  相似文献   

16.
A new paradigm in cosmology is presented: A geometrical phase transition from the Minkowski space to an anti-deSitter space at its maximum of extension instead of a big bang with inflation. This scenario implies an open universe with a negative cosmological constant which replaces completely the cold dark matter in galaxy clusters. Baryonic matter and radiation are created from the gravitational field over a very long period of about 30 billion years. The contracting universe runs then after a further period of 13 billion years through a minimum with T max ≃ 1.8 × 1012 K and a particle density n max ≃ 5 × 1038 cm-3 due to Hagedorn’s theory of a hadron gas. After the run through the minimum the universe expands like a big bang universe and reaches due to the negative cosmological constant after 44 billion years its maximal extension. Then it contracts again, and so on: An open ever-oscillating universe.  相似文献   

17.
Intense low-frequency intergalactic gravitational radiation with wave lengths λ smaller than the HUBBLE distance λH ≌ 3000 (100/H0) Mpc but not exceedingly small compared to λH. generates anisotropies in the microwave background radiation. One contribution results from the local wave field and produces mainly a quadrupole-type temperature variation on the sky. Available data on large-scale microwave fluctuations do not exclude appreciable amounts of gravitational background radiation in the Megaparsec wave band. A more sensitive test is provided by a second far-field contribution, which has a small angular scale. Its amplitude depends strongly on the ratio of the (present) rest mass density to the HUBBLE constant, if a cosmological origin of the blackbody radiation is assumed. In a low-density universe, pre-galactic COMPTON scattering of the blackbody radiation is not able to reduce the fluctuations caused by the low-frequency gravitational wave field. The recent small-scale data by PARIJSKIJ would allow only small amplitudes of gravitational waves with an energy density significantly below the critical cosmological density. On the other hand, in a high-density universe, the small angular scale fluctuation in the blackbody radiation is completely damped out, and a gravitational radiation cosmos reaching the critical density is admitted. Independent of the matter density, the data by PARIJSKIJ would confine gravitational background radiation to insignificant amplitudes if a discrete source model for the origin of the microwave background has to be assumed.  相似文献   

18.
The matter-gravity system is examined in a path integral approach for the case of conformal matter coupled to a Friedman-Robertson-Walker space time. In particular the case of gravitational potentials of interest in cosmology for which the universe tunnels from a small radius is examined. It is observed that in the presence of such gravitational horizons the universe evolves in a complex time and it is shown how a classical time and temperature emerge. Correspondingly, one will have compensating quantum and thermal fluctuations for the matter and gravity system and it is noted that the unstable mode of gravity corresponding to the universe tunneling into existence will be compensated by an analogous mode for matter corresponding to its creation. This last point is examined in a simple De Sitter model with conformal matter and a relation is found between the cosmological constant, the number of matter fields and the self coupling of matter responsable for its instability.  相似文献   

19.
Apocalypse soon     
Based upon a simple vacuum Lagrangian, comprising cosmological and quadratic scalar field terms, a cosmological model is presented the history of which is indistinguishable from that of an innocuous low-density cold dark matter (CDM) universe, but the future of which is very much shorter. For sensible values of the deceleration parameter (0< q 0<1), its age is greater than 85 per cent of the Hubble time, thus resolving the current version of the age crisis, which appears to be that t 0∼1/ H 0 while q 0 is significantly positive.  相似文献   

20.
We investigate the conditions under which general scalar-tensor gravity theories relax towards General Relativity. We extend the work of Damour and Nordtvedt [2] by studying the effects of the inclusion of a cosmological potential term. When the universe is either radiation dominated or vacuum, we find that Einstein's gravity is indeed a cosmological attractor and, also, that the universe exhibits inflationary expansion. This latter feature provides another striking argument in favour of the inflationary paradigm, which in the present setting arises without the intervention of the usual inflaton field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号