首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Desertification processes and impact in rainfed agricultural regions   总被引:1,自引:0,他引:1  
About one third of the Earth's land surface lies in the arid and semi-arid regions. This area is important as in addition to supporting 600 million people, it produces much of the world's grain and a substantial amount of animal produce.However, much of this area is now either suffering, or is threatened by the processes of desertification.In this paper, seven different desertification processes—degradation of vegetative cover, wind erosion, water erosion, salinization, soil crusting and compaction, reduction in organic matter, and accumulation of toxic substances— are identified and their effects described.It is pointed out that these processes are usually closely interrelated, the occurrence of one frequently leading to the occurrence of one or more of the others. But whatever the process, the end result is the same—degraded land with a reduced productive capacity.The paper concludes by pointing out that desertification occurs due to man's influence on the environment and we must therefore look beyond the purely physical processes if we are to solve the problems of desertification.  相似文献   

2.
European coasts are coming under increasing threat as a result of climate change from erosion and flooding. While coastal defences such as sea walls have been constructed since Roman times to protect human settlements from the sea, it is now increasingly recognised that these defences are unsustainable. The security provided by ‘hard’ engineered defences has encouraged development on the coast, and the defences themselves have led to the loss of intertidal habitat and the natural protection it provides.An alternative to maintaining ‘hard’ defences (hold-the-line) to protect land from increasing sea levels is managed realignment, where the engineered defences are deliberately breached. By allowing the coastline to recede to a new line of defence further inland, intertidal habitat is created providing natural protection from flooding and erosion.The study evaluates the economic efficiency—using cost–benefit analysis—of various managed realignment scenarios compared to a strategy of holding-the-line within the Humber estuary in North-east England. The results of this analysis show that managed realignment can be more economically efficient than holding-the-line over a sufficiently long time period—generally greater than 25 years. Sensitivity analysis demonstrates that results are more sensitive to the amount and value of intertidal habitat generated than they are to the amount and value of carbon stored by this habitat. Cost–benefit analysis is viewed as one component of a wider policy appraisal process within integrated coastal management.  相似文献   

3.
This article reviews the recent developments in the functional chain from climate models to climate scenarios, through hydrology all the way to water resources management, design and policy making. Although climate models, such as Global Circulation Models (GCMs) continue to evolve, their outputs remain crude and often even inappropriate to watershed-scale hydrological analyses. The bridging techniques are evolving, though. Many families of regionalization technologies are under progress in parallel. Perhaps the most important advances are in the field of regional weather patterns, such as ENSO (El Niño-Southern Oscillation), NAO (North Atlantic Oscillation) and many more. The gap from hydrology to water resources development is by far not that wide. The traditional and contemporary practices are well in place. In climate change studies, the bottleneck is not in this link itself but in the climatic input. The tendency seems to be towards integrated water resources assessments, where climate is only one among many changes that are expected to occur, such as demography, land cover and land use, economy, technologies, and so forth. In such a pragmatic setting a risk–analytic interpretation of those scenarios is often called for. The above-outlined continuum from climate to water is a topic where the physically based modelers, the empiricists and the pragmatists should not get restricted to their own way of thinking. The issues should develop hand in hand. Perhaps the greatest challenge is to incorporate and respect the pragmatic policy-related component to the two other branches. For this purpose, it is helpful to reverse the direction of thinking from time to time to start—instead of climate models—from practical needs and think how the climate scenarios and models help really in the difficult task of designing better water structures, outline better policies and formulate better operational rules in the water field.  相似文献   

4.
A parameterization scheme has been developed to describe the effects of a tall forest on the mean structure of the atmospheric boundary layer (ABL). The main advantage of the scheme is that dynamical and thermodynamical effects of a forest surface can be simulated satisfactorily using only a coarse-grid resolution within numerical models. Thereby, the canopy layer is parameterized as a quasi-subgrid phenomenon. This makes it possible to study meteorological phenomena within the ABL in a very economical way (with respect to computational time) whereby, nevertheless, more detailed information concerning the forest surface is taken into account than could be done using the same grid resolution and quite simple assumptions describing the canopy, e.g., the effective roughness.The applicability in numerical models is shown by using a slightly modified two-dimensional version of the mesoscale model FITNAH. For comparison, simulations with a high numerical grid resolution within the canopy have been carried out.Model results reproduce the known meteorological phenomena in forested areas, e.g., a stable thermal stratification near the surface during the day, and at night, a neutral — or slightly unstable condition — and, in general, reduced windspeed within the canopy layer.Diurnal variations and spatial distributions of temperature and humidity are found to be similar for both cases. Also, a thermally-induced local circulation system in the vicinity of a large clearing has been simulated satisfactorily.A comparison of the calculated results verifies that the parameterization scheme is quite suitable for simulating the effects of plant canopies on the distributions of meteorological variables in the ABL.  相似文献   

5.
Projections of climate impacts on crop yields simulated for different General Circulation Model (GCM) scenarios are used, in a recursively dynamic general equilibrium framework, to account for potential economy-wide impacts of climate change in Egypt. Comparing these impact projections to those obtained under a reference, business-as-usual, scenario assuming some moderate changes in the political, economic or technological spheres, indicates that global warming has potentially negative effects. The analysis is based on a global assessment of potential climate change-induced variations in world commodity production and trade. The Egyptian agricultural sector, and the non-agricultural sector to a lesser extent, are projected to be increasingly less self-sufficient. Specific potential adverse impacts are identified. The simulation results show that high-cost adaptation measures involving major changes in the agricultural system and practices may mitigate these adverse impacts. Stimulating economic development of the rural areas and creating appropriate conditions for effective diffusion and development of technologies — particularly for the agricultural sector — would seem a desirable strategy. Perhaps, more importantly, the simulation results show that the assumption of exogenously determined technological progress may be inappropriate, in which case the potential adverse impacts of a future warming of the global climate are likely to be fewer than is indicated in this study — if prevailing constraints on productivity growth in the major food and feed grains are ‘released’ by endogenous advances in technology.  相似文献   

6.
This paper is a comparative study between the two most common hailpad calibration systems: one annual calibration of a whole consignment of material, and the individual calibration of each plate after a hailfall. Individual calibration attempts to minimize errors due to differences in sensitivity to the impact of hailstones between plates from the same consignment, or due to differences in the inking process before the actual measurement.The comparison was carried out using calibration data from the past few years in the hailpad network in south-western France, and data from an individual calibration process on material provided by the hailpad network in Lleida (Spain). The same type of material was used in the two cases.The results confirm that the error in measuring hailstone sizes is smaller in the case of an individual calibration of hailpads than when one single calibration process was carried out for a whole consignment. The former is approximately 80% of the latter. However, this error could have been higher if it had not been the same person carrying out the single calibration process and the measuring of the dents: it has been found that differences in the inking process may account for up to 20% of the error in the case of small hailstones. Calibration errors affecting other variables, e.g. energy or parameter λ of the exponential size distribution are generally higher (5% and 18%, respectively) than errors due to the spatial variability of the hailstones. However, the calibration method does not influence the maximum size, since the relative error attributed to the spatial variability is about 8 times the calibration error.In conclusion, if errors in determining energy or parameter λ are to be reduced to a minimum, it is highly advisable to be consistent in applying the measuring procedure (if possible with the same person carrying out the measurements all the time), and even to use individual calibration on each plate, always bearing in mind that technicians have to be trained appropriately in order to achieve the highest possible degree of uniformity.  相似文献   

7.
Restoring tree cover in tropical countries has the potential to benefit millions of smallholders through improvements in income and environmental services. However, despite their dominant landholding shares in many countries, smallholders’ role in restoration has not been addressed in prior global or pan-tropical restoration studies. We fill this lacuna by using global spatial data on trees and people, national indicators of enabling conditions, and micro-level expert information. We find that by 2050, low-cost restoration is feasible within 280, 200, and 60 million hectares of tropical croplands, pasturelands, and degraded forestlands, respectively. Such restoration could affect 210 million people in croplands, 59 million people in pasturelands and 22 million people in degraded forestlands. This predominance of low-cost restoration opportunity in populated agricultural lands has not been revealed by prior analyses of tree cover restoration potential. In countries with low-cost tropical restoration potential, smallholdings comprise a significant proportion of agricultural lands in Asia (∼76 %) and Africa (∼60 %) but not the Americas (∼3%). Thus, while the Americas account for approximately half of 21st century tropical deforestation, smallholder-based reforestation may play a larger role in efforts to reverse recent forest loss in Asia and Africa than in the Americas. Furthermore, our analyses show that countries with low-cost restoration potential largely lack policy commitments or smallholder supportive institutional and market conditions. Discussions among practitioners and researchers suggest that four principles – partnering with farmers and prioritizing their preferences, reducing uncertainty, strengthening markets, and mobilizing innovative financing – can help scale smallholder-driven restoration in the face of these challenges.  相似文献   

8.
A new core, GPXX, from La Grande Pile (Vosges, France) has enabled a more precise evaluation of pollen data concerning the last climatic cycle at this site and has enabled reconstruction of the monthly temperature and precipitation. This paper shows that the various components of the reconstructed climatic signal are clearly separated and that they are coherent with the vegetation dynamics. The Eemian interglacial was influenced first by an oceanic climate and second by a more continental one. The two interstadials, St-Germain I and II, were mainly continental. These three temperate periods ended with a cool and humid transition period dominated by boreal forests, which may have been favourable to ice accretion. The Dansgaard-Oeschger oscillations from 55 to 25 Kyr BP are not significantly recorded in La Grande Pile.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

9.
Canopy wind profiles can often be represented by an exponential function such that wind-speeds in these vegetative canopies are a function of height and the attenuation coefficient of this wind profile relationship. To be more precise, canopy flow is a function of canopy density, element flexibility, and height. An index of canopy flow, therefore, can be defined as a conservative measure of the gross flow response to the presence of various types of roughness elements. For this study, windspeed profile data of two quite different canopy density experiments — field and wind tunnel - have been analyzed based on least-square fittings. The results indicate that the two sets of index values of canopy flow behave in a similar manner with maxima occurring for optimum densities of one-third the potential full array of roughness elements. These index values also differ by some 0.2, but are still compatible when one accounts for the respective levels of turbulence within these dissimilar canopies.  相似文献   

10.
We review five perspectives on human vulnerability to environmental change—biophysical, human ecological, political economy, constructivist and political ecology—and assess their respective strengths and weaknesses. While each of these perspectives offers important insights, and some theoretical convergence is evident, the field remains divided along a number theoretical fracture lines. Two deeply rooted metatheoretical assumptions—essentialism and nominalism—are hindering the construction of a more integrated perspective on vulnerability, one capable of addressing the interrelated dynamics of social structure, human agency and the environment. We conclude by suggesting that an evolutionary perspective on social change, grounded in a critical realist epistemology, provides the best prospect for avoiding the above pitfalls and advancing our understanding of vulnerability.  相似文献   

11.
A pollution-related study has been carried out for the Swiss city of Bienne that is located in complex terrain at the foot of the Jura mountains. The study consists of an analysis of pollutant transport and dispersion from various emittors located in the city, using a coupled system of mesoscale and micro-scale atmospheric numerical models. Simulations of atmospheric flow with the mesoscale model over a 20 × 20 km domain (horizontal resolution: 500 m; vertical resolution: 250 m) are used to initialize a microscale model centered over the city. The domain of this latter model is 4 × 4 km (horizontal resolution: 100 m; vertical resolution: 10 m). Plume trajectories are computed in the micro-scale model, and are a function of the regional-scale flow field previously calculated by the mesoscale model. Results show that the flow — and hence the plume trajectories embedded within this motion field — an sensitive not only to channeling effects by the local valley systems, but also to local or regional meteorological effects resulting from cloud activity, urban heat island, and the direction of the synoptic scale flow with respect to the orientation of the Jura mointains.  相似文献   

12.
The ability to simulate atmospheric dispersion with models developed for applied use under stable atmospheric stability conditions is discussed. The paper is based on model simulations of three experimental data sets reported in the literature. The Hanford data set covered weakly stable conditions, the Prairie Grass experiments covered both weakly stable and very stable atmospheric conditions, and the Lillestrøm experiment was carried out during very stable conditions. Simulations of these experiments reported in the literature for eight different models are discussed. Applied models based on the Gaussian plume model concept with the spread parameters described in terms of the Pasquill stability classification or Monin–Obukhov similarity relationships are used. Other model types are Lagrangian particle models which also are parameterized in terms of Monin–Obukhov similarity relationships. The applied models describe adequately the dispersion process in a weakly stable atmosphere, but fail during very stable atmospheric conditions. This suggests that Monin–Obukhov similarity theory is an adequate tool for the parameterization of the input parameters to atmospheric dispersion models during weakly stable conditions, but that more detailed parameterisations including other physical processes than those covered by the Monin–Obukhov theory should be developed for the very stable atmosphere.  相似文献   

13.
基于在云南省西部保山地区开展的入户问卷调查和关键信息人访谈,探讨在发生旱灾,大量农民外出务工以弥补旱灾给家庭和农业生产带来的损失这一特定背景下,对比外出务工农户和非外出务工农户在收入来源、应对旱灾措施和家庭收入分配上的差异,分析外出务工对农民适应气候变化能力带来的影响。结果表明:外出务工收入给留守家庭的气候变化适应能力带来了积极的影响;另外一方面,大量青壮年劳动力的外出让经济结构仍然以农业为主的村庄出现劳动力缺乏、农业发展后续动力不足等潜在问题。建议在未来针对外出务工人口开展的职业培训中增加诸如家庭财务管理、气候变化等相关内容来加强农村地区和农民的气候变化适应能力,建议政府推广气候智能农业,采取本地化/本土化的适应措施。  相似文献   

14.
We describe laboratory experiments on the instability and later evolution of a front in a two-layer rotating fluid. In particular, we focus on the influence of a nearby boundary on instability growth and eddy formation. The front is produced through the adjustment of a buoyant fluid initially confined within a bottomless cylinder. Typically a front in quasi-cyclostrophic balance establishes after two rotation periods, after which it becomes unstable. Measurements of the velocity and vorticity fields at the surface are made which provide detailed information on the evolution of the front as the instability grows to finite amplitude. We focus on the time evolution of the vorticity and distinguish between the cyclonic and anticyclonic components. The spatial averages of the cyclonic and anticyclonic vorticity first grow exponentially. This growth saturates when eddies form and are advected across the front. The growth rate depends upon two nondimensional parameters: the width W of the upwelling region in units of the internal radius of deformation and the depth ratio δ between the two layers. Measurements of the growth rates for the average of the cyclonic and anticyclonic vorticity are compared to the values inferred from a simplified model for baroclinic instability. A good agreement is obtained when the front develops far from the boundary (i.e. W1). However, the agreement is only qualitative when the front is near the boundary (i.e. W1). We find that, as W decreases, the growth of cyclonic eddies consisting of dense—“coastal”—water is enhanced compared to that of anticyclonic vorticity consisting of buoyant—“off-shore”—water. This crucial effect of the boundary with respect to the instability of the front has significant impact on exchanges across the front.  相似文献   

15.
Here we simulate dryland agriculture in the United States in order to assess potential future agricultural production under a set of general circulation model (GCM)-based climate change scenarios. The total national production of three major grain crops—corn, soybeans, and winter wheat—and two forage crops—alfalfa and clover hay—is calculated for the actual present day core production area (CPA) of each of these crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric carbon dioxide concentration ([CO2]) increases production. Depending on the climatic change scenarios employed overall national production of the crops studied changes by up to plus or minus 25% from present-day levels. Impacts are more significant regionally, with crop production varying by greater than ±50% from baseline levels. Analysis of currently possible production areas (CPPAs) for each crop indicates that the regions most likely to be affected by climate change are those on the margins of the areas in which they are currently grown. Crop yield variability was found to be primarily influenced by local weather and geographic features rather than by large-scale changes in climate patterns and atmospheric composition. Future US agronomic potential will be significantly affected by the changes in climate projected here. The nature of the crop response will depend primarily on to what extent precipitation patterns change and also on the degree of warming experienced.  相似文献   

16.
A model is described, in which the mean vertical wind profile and turbulence spectra at different heights are calculated for a turbulent boundary layer without thermal stratification. The model makes use of Heisenberg's formula for the transfer of turbulent energy and is based on the assumption of a constant shearing stress in that boundary layer. As a result, a logarithmic wind profile follows with 0.39 as the value of von Kármán's constant, which is — in this model — strongly related to the inertial subrange of the turbulent energy spectra and therefore to the Kolmogoroff constant.This paper is based on studies done by the author during a one-year visit to CSIRO Division of Meteorological Physics, Aspendale, Australia, and was presented at the AGARD Specialists Meeting on The Aerodynamics of Atmospheric Shear Flows sponsored by the Fluid Dynamics Panel at Munich, Germany, during 15–17 Sept. 1969.  相似文献   

17.
Providing food and other products to a growing human population while safeguarding natural ecosystems and the provision of their services is a significant scientific, social and political challenge. With food demand likely to double over the next four decades, anthropization is already driving climate change and is the principal force behind species extinction, among other environmental impacts. The sustainable intensification of production on current agricultural lands has been suggested as a key solution to the competition for land between agriculture and natural ecosystems. However, few investigations have shown the extent to which these lands can meet projected demands while considering biophysical constraints. Here we investigate the improved use of existing agricultural lands and present insights into avoiding future competition for land. We focus on Brazil, a country projected to experience the largest increase in agricultural production over the next four decades and the richest nation in terrestrial carbon and biodiversity. Using various models and climatic datasets, we produced the first estimate of the carrying capacity of Brazil's 115 million hectares of cultivated pasturelands. We then investigated if the improved use of cultivated pasturelands would free enough land for the expansion of meat, crops, wood and biofuel, respecting biophysical constraints (i.e., terrain, climate) and including climate change impacts. We found that the current productivity of Brazilian cultivated pasturelands is 32–34% of its potential and that increasing productivity to 49–52% of the potential would suffice to meet demands for meat, crops, wood products and biofuels until at least 2040, without further conversion of natural ecosystems. As a result up to 14.3 Gt CO2 Eq could be mitigated. The fact that the country poised to undergo the largest expansion of agricultural production over the coming decades can do so without further conversion of natural habitats provokes the question whether the same can be true in other regional contexts and, ultimately, at the global scale.  相似文献   

18.
Summary The global nature of the Madden-Julian Oscillations (MJOs) have been investigated by applying a frequency filter to daily data for the summer monsoon months (June to September) during two contrasting years—1987, a deficient monsoon year and 1988, an excess monsoon year. Several meteorological parameters at five levels in the troposphere have been examined. Regions with large amplitude of these oscillations are isolated for each year. The results indicate that the global spatial distribution of these oscillations is more in a deficient year than in an excess year, in particular over the Indian subcontinent and the EI Niño Southern Oscillation (ENSO) regions. The principal modes of variability during these two years have been investigated through Empirical Orthogonal Functions (EOFs). The first two eigenmodes of 850 hPa zonal wind explain nearly 50% of the variance. The dipole type of structure between the Indian and the Pacific region is more apparent in 1987 than in 1988. Time-longitude cross sections of the filtered zonal wind over the equatorial regions clearly show that eastward propagation is detected in 1987, but is virtually absent in 1988. It is also seen that the 30–60 day filtered winds are stronger during the monsoon of 1987 than in 1988.  相似文献   

19.
Indoor climates and climate change are an integral – but to date poorly integrated – element of climate and climate-change research more generally. They have been examined chiefly through the study of human thermal comfort, about which two conflicting schools of thought have emerged. One sees thermal comfort as governed by a common and fixed human preference and confined to a narrow range of conditions. The other sees it as strongly influenced by habit and expectations, which can differ greatly from one person, place, or period to another. This paper examines, in the light of these theories and what they imply, an episode of major and rapid indoor climate change – a sharp rise in winter temperatures thatoccurred in the northern United States in the first half of the nineteenth century. It finds support for both points of view and suggests that each is valid under particular circumstances. The results, if borne out by more research, will help to inform projections of future demand for heating and cooling and for outdoor climatic amenities, both significant elements of the human dimensions of global climatic change.  相似文献   

20.
Nordhaus (1991), Cline (1992), Fankhauser (1992), and Titus (1992) have published comprehensive estimates of annual climate change damages to the United States in about 2060 that vary from $55 billion to $111 billion ($1990). The estimates are comprehensive because they address market and nonmarket impacts. They based their estimates on different assumptions about the rates of climate change and sea level rise, rates of return on investment, and changes in population and income. In addition, many of the damage estimates, although reported for a 2.5–3.0 °C warming, were based on studies that assumed higher rates of warming. Thus, these studies may have overestimated damages associated with a 2.5–3.0 °C warming. In this paper, the results of these studies were standardized for a 2.5 °C warming, a 50-cm sea level rise, 1990 income and population, and a 4% real rate of return on investments. After standardization, the total damage estimates range from $42.3 billion to $52.8 billion, slightly less than 1% of United States GNP in 1990. Yet, within individual sectors, such as agriculture and electricity, standardized damages differ by more than an order of magnitude. In addition, a significant amount of speculation underlies the damage estimates. Thus, the small range of total standardized damages and apparent agreement about the magnitude of such damages should be interpreted with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号